

Earth Measurements
Student Guide for Experiments #1 through #6

Version 1.2

Warranty

Parallax warrants its products against defects in materials and workmanship for a period of 90 days. If you discover a defect, Parallax
will, at its option, repair, replace, or refund the purchase price. Simply call for a Return Merchandise Authorization (RMA) number,
write the number on the outside of the box and send it back to Parallax. Please include your name, telephone number, shipping
address, and a description of the problem. We will return your product, or its replacement, using the same shipping method used to
ship the product to Parallax.

14-Day Money Back Guarantee

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a full refund. Parallax
will refund the purchase price of the product, excluding shipping / handling costs. This does not apply if the product has been altered
or damaged.

Copyrights and Trademarks

This documentation is copyright 1999 by Parallax, Inc. BASIC Stamp is a registered trademark of Parallax, Inc. If you decided to use the
name BASIC Stamp on your web page or in printed material, you must state that "BASIC Stamp is a registered trademark of Parallax,
Inc." Other brand and product names are trademarks or registered trademarks of their respective holders.

Disclaimer of Liability

Parallax, Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or under any
legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, and any costs or
recovering, reprogramming, or reproducing any data stored in or used with Parallax products. Parallax is also not responsible for any
personal damage, including that to life and health, resulting from use of any of our products.

Internet Access

We maintain internet systems for your use. These may be used to obtain software, communicate with members of Parallax, and
communicate with other customers. Access information is shown below:

 E-mail: stampsinclass@parallaxinc.com
 Ftp: ftp.parallaxinc.com and ftp.stampsinclass.com
 Web: http://www.parallaxinc.com and http://www.stampsinclass.com

Internet BASIC Stamp Discussion List

We maintain two e-mail discussion lists for people interested in BASIC Stamps. The BASIC Stamp list server includes engineers,
hobbyists, and enthusiasts. The list works like this: lots of people subscribe to the list, and then all questions and answers to the list are
distributed to all subscribers. It’s a fun, fast, and free way to discuss BASIC Stamp issues and get answers to technical questions. To
subscribe to the BASIC Stamp list, send e-mail to majordomo@parallaxinc.com and write subscribe stamps in the body of the
message. This list generates about 40 messages per day.

The Stamps in Class list is for students and educators who wish to share educational ideas. To subscribe to this list go to
http://www.stampsinclass.com and look for the E-groups list. This list generates about 5 messages per day.

Contents

Earth Measurements Student Guide Version 1.2 • Page 1

Table of Contents

Preface ... 3

Audience and Teacher’s Guides .. 3
Copyright and Reproduction .. 4
Special Contributors .. 4

Experiment #1: Temperature Transducer.. 5

Parts Required ... 6
Build It.. 6
Temperature Transducer... 8
Morse Code ..10
Challenge! ...22

Experiment #2: Data Logging.. 23

Parts Required ...24
Program It...25
Advanced Topic: Detecting a Double-Click ..30
Learning to READ and WRITE, the Basics ..32
Talking Thermometer, Morse Code Revisited..36
Challenge! ...44

Experiment #3: Temperature Probe for Micro-Environments .. 47

Parts Required ...47
Analog Temperature Sensor ...48
BASIC Stamp Pins, Capacitors, Review of the BASICs ...49
Simple Resistance Detector ..51
Resistance Detector Using RCtime ..55
Temperature Sensor Probe Using the AD592 and RCtime ...57
AD592 Calibration ...60
Talking Thermometer Revisited, Two Channels...64
Automatic Calibration (Advanced Topic) ..66
Some Earth Measurements Temperature Experiments..69
Challenge...72

Contents

Page 2 • Earth Measurements Student Guide Version 1.2

Experiment #4: Light on Earth and Data Logging.. 75
Parts Required ...76
Photodiode as a Light Transducer ...77
Photodiode and the BASIC Stamp as a Digital Light Meter ..86
Temperature and Light Meter...91
Light and Temperature Logger, Using RAM Memory ..92
Experiments with the Data Logger ..97
Challenge! ...100

Experiment #5: The Liquid Environment .. 101

Introduction ...101
Parts Required ...102
Build it! ..102
Wetness Alarm ...102
Measurement of Conductance Using RCTime ...106
Measurement of Conductance Using the 555 Timer..108
Conductance in Water..114
Data Logging Continued: Drying of Soil ..117
Additional Experiments to Try ..120
Challenge! ...123

Experiment #6: Measurement and Control .. 125

Introduction ...125
Parts Required ...126
Build it! ..126
On-Off Control of Pump..127
Pump Control with Feedback..133
Memory in the BASIC Stamp, Revisited ..135
Data Logger...141
Other Investigations ...151
Challenge! ...152

Appendix A: Parts Listing and Sources .. 153
Appendix B: Building the AD592 Temperature Probe ... 159
Appendix C: Resistor Color Code... 161
Appendix D: Data Sheets .. 163

Preface

Earth Measurements Student Guide Version 1.2 • Page 3

Preface

The subject of these six experiments is Earth Measurements. Think of yourself as a geologist, wanting
to know more about El Niño, the famous effect in the waters off the coast of South America that changes
weather patterns all over the world. You are going to need lots of measurements. Or think of yourself as the
operator of a water treatment plant, where a city full of people is counting on you to deliver pure water day
and night. You are going to have to monitor the water and operate a computer-controlled plant to pump it
across the city. Or, think of yourself as responsible for an orchard of apples. You need to keep close track of
the weather so that you will keep one step ahead on irrigation, pest control and bringing your crop to market.
These are just a few examples of what we mean by Earth Measurements.

Of course Earth Measurements as a human interest were around long before microcomputers were
ever imagined. Whether you think of yourself back 50 years or 500, or even 5,000 years, you can picture
humans looking around and testing the wind. Computers, especially small, specialized ones allow
measurements to be taken at points where no human can go, and more importantly, lots of measurements,
tirelessly. Computers can summarize all that data and even put it up for a view on a worldwide computer
network. They can also be programmed to close the loop, to do things like turn on a pump when a field needs
to be irrigated, automatically. These were things that were hardly imagined 50 years ago.

Earth Measurements is not much different from measurement in other settings. For example home
appliances such as clothes dryers, ovens and room thermostats use microcontrollers for measurement and
control, as do instruments in the factory, the laboratory, the hospital, and beyond earth out into space. The
techniques of measurement in these different settings are all similar. What you learn here will generalize to
many fields outside of earth measurements. But let's recognize that the health of our planet depends a lot on
understanding that can come from measurements. There are many interesting careers that can combine
knowledge of electronics with a love for the earth environment, like being a scientist, engineer, or a modern
farmer.

Audience and Teacher’s Guide

The Earth Measurements curriculum was created for ages 17+ as a subsequent text to the “What’s a
Microcontroller?” guide. Like all Stamps in Class curriculum, this teaches new techniques and circuits with only
minimal overlap between the other texts. New topics introduced in this series are a closed-loop feedback
control system, serial communication, use of the BASIC Stamp’s EEPROM, calibration of sensors, conductivity
in water, and the use of a sound transducer for human feedback.

Preface

Page 4 • Earth Measurements Student Guide Version 1.2

The depth and availability of a Teacher’s Guide varies between the Stamps in Class curriculum.
Because experts in their field independently author each set of experiments, and they are provided leeway in
terms of format and content in the Teacher's Guide. The Earth Measurement Teacher’s Guide will be available
by e-mail request to stampsinclass@parallaxinc.com. As of August 1999 the probable date of release for an
Earth Measurements Teacher's Guide is December, 1999.

Copyright and Reproduction

Stamps in Class experiments are copyright  Parallax 1999. Parallax grants every person conditional

rights to download, duplicate, and distribute this text without our permission. The condition is that this text
or any portion thereof, should not be duplicated for commercial use resulting in expenses to the user beyond
the marginal cost of printing. That is, nobody would profit from duplication of this text. Preferably, duplication
would have no expense to the student. Any educational institution wishing to produce duplicates for their
students may do so without our permission. This text is also available in printed format from Parallax.
Because we print the text in volume, the consumer price is often less than typical xerographic duplication
charges. This text may be translated to any other language with the permission of Parallax, Inc.

Special Contributors

Tracy Allen Ph.D. with Electronically Monitored Ecosystems, located in Berkeley, California wrote this

curriculum (http://www.emesystems.com). EME Systems designs and manufactures instruments for
environmental science. Some of their products are off-the-shelf, and others are customized systems for
individual clients. The commercially available OWL2C uses a BASIC Stamp II or IISX microcontroller, providing
programmable capabilities for a customer who doesn’t want to use the default program. Dr. Allen has
particular interest in programs that deal integrated pest management on the farm, efficient use of natural
resources, and understanding of endangered species or ecosystems. A recent project of Dr. Allen's consists of
measuring the surface temperature on dairy cows to evaluate milk productivity. Dr. Allen is a frequent
contributor to the Parallax BASIC Stamp and Stamps in Class list servers. Parallax is very appreciative of his
involvement with the Stamps in Class program.

Special thanks also to the Parallax team who provided ideas and content for the program. The

Parallax staff who designs, manufacturers, and accepts orders and packages the Stamps in Class products is a
key part of the Stamps in Class program.

Experiment #1: Piezo and Temperature Transducer

Earth Measurements Student Guide Version 1.2 • Page 5

Experiment #1: Piezo
and Temperature
Transducer

Temperature is the number one variable in Earth
Measurements. We need only a transducer to measure the
temperature, and another transducer to convey the
temperature readings to our eyes and ears.

In this first experiment, you will start off by experimenting

with a transducer that converts electrical impulses from the BASIC Stamp into musical tones. This audio
annunciator will provide useful feedback about the operation of the BASIC Stamp throughout this series of
experiments. The main project in this experiment will be to install a digital temperature sensor on your Board
of Education. This too is a transducer that converts temperature into a coded form that the BASIC Stamp can
understand. The BASIC Stamp will take temperature readings and display them on the computer screen. In
this series of experiments, we are going to measure temperature in two quite different ways, to help
understand how the versatile BASIC Stamp is used to approach the task.

Temperature is of the first importance in Earth Measurements. You are probably sitting in a comfortable
room, in the range of 17 to 30 degrees Celsius (63 to 86 degrees Fahrenheit). There may be a thermostat in
the room that holds the temperature at that comfortable value, using a heater or an air conditioner (or
maybe not!?) What do you think the temperature is right now where you are? How about outside? If you don't
have a thermometer, don't worry; you will have one before this experiment is over. We all know from
personal experience that temperature is important to our well being.

We live on a planet that is just the right distance from the sun and has the right kind of atmosphere to offer
temperatures conducive to life, as we know it. Through our human technology and industry, from clothing and
housing all the way through to modern electronic environmental controls, we have extended the range of
temperatures where we can live.

It is not far-fetched to say that every process on earth depends on temperature in some way. Think of
erosion of mountains. Every year water seeps into the cracks, it freezes, expands, and breaks off pieces.
Snow, rain, clouds, wind. Nearly every aspect of the weather depends critically on temperature. A few tenths
of a degree change in the temperature of the water in the South Pacific Ocean (El Niño) can affect the
weather all over the world. How apples grow on trees, how the worms grow in the apples, how mosquitoes
thrive in stagnant pools, how tadpoles survive to eat the mosquitoes, everything relating to agriculture and
biology is dependent on temperature. Add to that the environment in factories, hospitals, laboratories,
schools, homes, museums, and on and on. Suffice it to say that if you want to go into any career related to
the environment and microcontrollers, you are going to have to know how to measure temperature.

Experiment #1: Piezo and Temperature Transducer

Page 6 • Earth Measurements Student Guide Version 1.2

Build It!

Piezoelectric transducer:
Piezo comes from a Greek word that means “to squeeze or press”, and electric
comes from a Greek word that refers to amber, a mineral that can accumulate
a charge of static electricity when rubbed. Crystals, such as quartz and also
some ceramic and plastic materials generate electricity when they are flexed
back and forth. This is the piezoelectric effect. Electrical wires attached to the
surface of the material can pick up that electricity. This is the basis of some
kinds of microphones. A microphone is a transducer (Latin for "lead across")
that transforms sound into electricity. The piezoelectric effect works in
reverse too. If electricity is applied across some piezoelectric materials, they
bend in response. They can be fabricated as a thin disk, with electrical
connections on both faces, and wires attached. The disk is like a tiny drumhead.
When connected to an rapidly alternating electrical voltage, it flexes back and
forth, compresses the air and emits sound waves, and becomes a piezo
transducer. It turns electricity into sound. The electrical voltage has to be in
the right frequency range to resonate with the natural tone of the tiny
drumhead. Sometimes a piezo transducer is packaged along with some
electrical circuitry, so that all you have to do is connect it to a battery or to a
power supply and it buzzes at one preset pitch. Such a device is called a piezo
buzzer. The device we are using here is a simple piezo transducer. It will not
buzz if we connect it directly to a battery. It will only produce sound when we
provide audio frequency electrical impulses from the BASIC Stamp.

Parts Required

In this experiment you will need the following parts in addition to
a BASIC Stamp II and Board of Education:

(1) piezo transducer
(1) DS1620 Temperature Sensor
(1) 1K Ω resistor (brown black red)
(1) 0.1 µF capacitor
(several) jumper wires

It's always good to start out with a simple project, just to get into
the swing of things. That is going to be the pattern in this series
of experiments. You will start out with a warm-up project, and
then move on to the main focus of the experiment. The warm-up
to start this experiment is simply a buzzer, a sound output device.
In fancy terms, it is an "annunciator", or a "piezoelectric

transducer". It will be a big part of
our user interface in the projects to
come in this set of these experiments
on Earth Measurements. Sure, we can
also see results on the computer
screen when the Board of Education
is hooked up to it via its umbilical
cord. Having the annunciator will
allow us to stand up and walk away
from the computer, around the
room, into the dark, outside into the
sunlight, and still be able to "hear"
what is going on.

The piezoelectric transducer you will
find in your parts kit is a black plastic
cylinder with two pins sticking out
the bottom and a sound hole in the
top. The top of the case above one of
the pins is labeled with a + sign.
Hook it up to your Board of Education
as shown in the pictorial in Figure 1.1.

Experiment #1: Piezo and Temperature Transducer

Earth Measurements Student Guide Version 1.2 • Page 7

The schematic is shown in Figure 1.2.

Figure 1.1: Piezo Transducer Pictorial

• Piezo on an angle as shown
• Pin under + mark wired to P0
• Other pin wired to Vss

Please note. The six experiments in this Earth Measurements series
will progress from unit to unit by adding new circuits onto the old
ones already built on the Board of Education. To avoid having to
rewire things later, please follow the suggested parts placement.

Figure 1.2: Piezo Transducer Schematic
Electrical schematic of pictorial shown in Figure 1.1

Experiment #1: Piezo and Temperature Transducer

Page 8 • Earth Measurements Student Guide Version 1.2

Program it!

This experiment consists of three smaller sections: piezo transducer,
Morse code, and temperature measurement. The project is progressive.

Temperature Transducer

Now, to make noise with the piezo transducer, the BASIC Stamp has to supply a high frequency signal from P0.
The PBASIC command to do this is freqout. That's short for "frequency output”. Start the BASIC Stamp
editor on the PC and type in the following PBASIC program:

freqout 0,1000,1900

That's it. A one-line program.

Now be sure the Board of Education is connected by its cable to the PC. While
holding the "ALT" key down, press the letter "R", for "run" (DOS version - in
Windows it's ALT/R and "enter"). This should be familiar if you went through the
“What's a Microcontroller?” experiments. If all is well, you should hear a high
pitch beep. Each time you press the reset button on the Board of Education,
you will hear it again. The reset button is found on the Board of Education near
one corner, and is clearly labeled Reset. You can press it as often as you want,
no worries. Pressing the button starts your program over again but will not
erase it.

There are three parameters in the freqout command:

freqout 0,1000,1900
 ^^^^-selects an output frequency of 1900 hertz
 ^^^^-----makes the tone last 1 second=1000 milliseconds
 ^^----------uses P0 signal line for the tone

If we could observe the voltage on P0 during the freqout command, we
would find that it goes back and forth from 0 to 5 volts very rapidly, and what
comes out is fundamentally a 1900-hertz sine wave that lasts for 1 second. If
you have a handheld multimeter then try to measure the frequency. For more
information about how it works, see the explanation of the freqout and PWM
commands in the BASIC Stamp Manual Version 1.9.

In case of difficulty
during download:

In the Windows and DOS
versions of the software, if
RUN gives you a message
about "hardware not found"
or "communication error",
then check to be sure that the
cable that connects the PC to
the Board of Education is
okay. Also check to be sure
that the Board of Education
has a good power supply and
that the power supply
indicator light on the Board of
Education is glowing.

If you see a message
indicating an error in your
program, then check your
typing. If the program is okay
and ALT-R is accepted without
an error message, but it
simply won't work, then check
the wiring on your Board of
Education. Compare it to the
wiring shown on the pictorial.

Experiment #1: Piezo and Temperature Transducer

Earth Measurements Student Guide Version 1.2 • Page 9

Parameter:
A parameter is a number that
governs the behavior of a
command or a process. In the
freqout command, the
parameters of the command
specify what pin to use, how long
the sound will be, and what the
frequency will be. The word
parameter is one you will often
hear in the fields of science and
engineering. For example: air
temperature is a parameter that
determines how fast paint will
dry. Or, the global average
temperature of the earth's
atmosphere is one parameter that
determines how much water is in
the ocean versus locked in the ice
caps, and how much coastline is
exposed or submerged.

Now it's time to experiment. Modify the program by replacing the 1900
with 3800 to give it a higher pitch:

freqout 0,1000,3800

Download the program to your BASIC Stamp. Pay attention that what you
hear is a higher pitch. Try it a couple of times, one way and then the other.
Don't be afraid you are going to wear out the BASIC Stamp by
reprogramming it lots of times. You can reprogram the BASIC Stamp at
least a million times.

freqout 0,2000,3800

And this, to make the freqout command play two tones at once:

freqout 0,2000,1900,2533

The number 2533 is equal to 1900 times 4/3, the musical interval "fourth".
The BASIC Stamp can play two tones at once, but that's it, no three part
harmony.

And try the following:

freqout 0,2000,1900,1903

How do you explain what you hear?

And try a very short duration, to make a click 2ms long:

freqout 0,2,1900,3804

Feel free to experiment. By experimenting with individual BASIC Stamp commands, you can become aware of
possibilities that may be of use in programs later on.

Experiment #1: Piezo and Temperature Transducer

Page 10 • Earth Measurements Student Guide Version 1.2

Morse Code

An “audio annunciator” is a device that gives sound feedback about what is going on in a system. Having an
audio annunciator on the Board of Education is going to be very useful throughout these experiments on
Earth Measurements. In Experiment #2, we will program it to send numbers using Morse code, and use the
code to annunciate the temperature readings. Morse code is a fine way to send messages using sound. Here
are the Morse code numerals from 0 to 9:

Numeral: Morse Code Binary
0 dah dah dah dah dah 11111
1 dit dah dah dah dah 01111
2 dit dit dah dah dah 00111
3 dit dit dit dah dah 00011
4 dit dit dit dit dah 00001
5 dit dit dit dit dit 00000
6 dah dit dit dit dit 10000
7 dah dah dit dit dit 11000
8 dah dah dah dit dit 11000
9 dah dah dah dah dit 11110

The Morse code is based on sending patterns of short and long sounds. The long sound is always three times
as long as the short sound. The short sound is called "dit" and the long sound is called "dah". The numerals
are all made up of five dits and dahs. The letters of the alphabet have from one to four sounds, and the most
common letters have the shortest patterns (for example, e=dit, t=dah, s=dit dit dit, q=dah dah dit dah).
Punctuation has six sounds, e.g. period=dit dit dah dah dit dit. Within one letter or numeral, the time between
sounds is supposed to be the same length as the dit. And the time between different digits in a sequence like
"50" is supposed to be the same length as a dah. The "binary" column is there just to show how you might
think of Morse code as a binary number.

In these experiments, we will use only the numerals. Try this simple program that sends the two-digit number
"50" as Morse code. You do not have to type in the remarks. Recall that remarks are the apostrophe “ ' “ and
everything that follows it on the line.

dit con 70 ' a short span of time in milliseconds
dah con 3*dit ' a longer time, 3 times the above
i var nib ' index
for i=1 to 5 ' send 5 sounds
 freqout 0,dit,1900 ' send a dit
 pause dit ' short silence
next
pause dah ' a longer silence between digits

Experiment #1: Piezo and Temperature Transducer

Earth Measurements Student Guide Version 1.2 • Page 11

for i=1 to 5 ' send 5 sounds
 freqout 0,dah,1900 ' send a dah
 pause dit ' short silence
next

Run the program. Press the reset button on the Board of Education if you want to hear the number 50 again.
How could you modify your program to send the most famous Morse code message of all, SOS?

You should already be familiar with the for. . . next loop from the “What's a Microcontroller?” text.
Think about how the program incorporates the rules of the Morse code. Note how it starts off by defining a
constant dit in milliseconds, and then dah is defined as three times dit. PBASIC allows you to do that, to define
one constant mathematically in terms of another. That's convenient, because it allows you to change the
overall speed by changing only the “dit” constant, and “dah” will fall into place.

In your program, change the dit constant from 70 to some other value, twice or half as long, and listen to the
effect on the overall speed. The important thing is that the ratio between the dit and the dah is always going
to be 1:3.

This is only an introduction. We will write a serious Morse program in experiment two, to annunciate
temperature readings.

Temperature Readings from the DS1620

Now for a complete change of pace. Let's move on to the main topic, to acquire some temperature readings.
In engineering, we usually use the word acquire, instead of get when we refer to data or readings. The Board
of Education is going to become our data acquisition system.

The DS1620 is a modern temperature transducer (portions of the DS1620 data sheet are included in Appendix
D). There is that word, transducer again. Here, it refers to a device that transforms temperature into an
electrical signal. The DS1620 takes temperature as its input, and transduces that value into a digital code that
the BASIC Stamp can understand. The digital code represents the temperature of the DS1620 chip.

The DS1620 comes in an 8-pin plastic package. Plug it into the Board of Education and hook it up as shown in
the pictorial in Figure 1.3. A word to the wise--When you change the wiring on the Board of Education, it is a
good idea to disconnect the battery or power supply. It is all too easy to touch a wire in the wrong place and
risk burning something out. Double check your wiring, or better yet, have someone else check it, before you
reconnect the power. The schematic for the DS1620 is shown in Figure 1.4.

Experiment #1: Piezo and Temperature Transducer

Page 12 • Earth Measurements Student Guide Version 1.2

Figure 1.3: DS1620 Pictorial
Plug the DS1620 in at the very end of the BOARD OF EDUCATION. Observe
that there is a notch at one end of the DS1620 package to indicate the
polarity. Be careful not to reverse the power supply.

• 0.1 uF capacitor from Vdd to Vss
• DS1620 pin 4 wired to Vss.
• DS1620 pin 8 wired to Vdd
• DS1620 pin 1 wired through 1K ohm resistor to BASIC Stamp P15
• DS1620 pin 2 wired to BASIC Stamp P14
• DS1620 pin 3 wired to BASIC Stamp P13

Figure 1.4: DS1620 Schematic
Schematic of the circuit pictured above. Remember – the
piezo transducer portion of the circuit has already been
built.

Experiment #1: Piezo and Temperature Transducer

Earth Measurements Student Guide Version 1.2 • Page 13

Indicator:
The DS1620 is an 8-pin DIP
package. The indicator denoting
the DS1620’s pin 1 is a small notch
on top of the chip. On parts like
the DS1620 and BASIC Stamp, the
pins are always counted
counterclockwise starting from
the mark. The mark can be a bump,
round depression, notch, beveled
edge, etc.

Plug the DS1620 in at the very end of the Board of Education. Observe that there is an indicator at one end
of the DS1620 package, to indicate where pin 1 is connected. Be careful not to reverse the power supply
connections!

Now it's time to program the DS1620, literally. The DS1620 is itself a little computer. More accurately, it's a
smart sensor. It can remember certain settings and do some pretty nifty tricks all on its own. Smart sensors
are being used more and more in electronics and in the field of environmental monitoring and control.

Enter the following program. Again, you don't have to enter the remarks after and including the '.

low 13 ' Puts the DS1620 in the waiting state
freqout 0,1000,3800 ' sound shows us the program is running
high 13 ' Tells the DS1620 that a command is coming
shiftout 15,14,lsbfirst,[12,2] ' Command to set DS1620 configuration 2.
low 13 ' Completes the command cycle.
end ' end of program

Double check your typing. Download your program.

You will hear the one-second tone. That's all. But a lot has happened.
The shiftout command sends two bytes 12 and 2 to the DS1620. The 12
is a command to the DS1620 to get ready for the configuration, and the 2
is the actual configuration. Here are the four possible configurations:

 0: No CPU, continuous conversion
 1: No CPU, one-shot conversion
 2: Yes CPU, continuous conversion
 3: Yes CPU, one-shot conversion

What? By selecting configuration 2, we are telling the DS1620 that we
want it to send its readings to a CPU (Central Processing Unit--the BASIC
Stamp). The alternative is for it to sit there and monitor temperature on
its own, and not send back any readings. What good would that be? We
asserted that the DS1620 is a smart sensor. Those other pins we are not
using on the DS1620 could be wired up to a fan or heater, and set to
regulate the temperature in a room or in a terrarium. The DS1620 also
has a command that allows you to set a desired temperature. You will
hear more about regulation of temperature in Experiment #6. But that is
the way we are using it here, and we have not connected anything to
those pins.

Experiment #1: Piezo and Temperature Transducer

Page 14 • Earth Measurements Student Guide Version 1.2

By setting the CPU option, the DS1620 will send data back on the serial line when it receives commands. The
term “continuous conversion” means that it will read temperature over and over and always have a current
value available. The term “one-shot” (which we are not using) means that it will read the temperature once
and then stop until it receives a new command. The one-shot mode is used when an engineer needs to get the
best battery life.

Now that we have sent the configuration, the DS1620 will not forget the setting. It is stored in memory inside
the DS1620 in a kind of memory (EEPROM, like the BASIC Stamp program memory) that is not lost when the
power supply is turned off.

The heart of the above PBASIC program is the shiftout command. The sequence is an example of
synchronous serial communication. It will pay for you to understand how it works. Lots of modern electronics,
found in everything from pagers to satellites use these ideas. One main reason for this popularity is that
devices that use serial communication can be made very small, because there don't have to be many wires
connecting them. Here are the parameters of the command.

high 13 <--- this is really part of it, the chip select.
shiftout 15,14,lsbfirst,[12,2]

 ^^^^--- two bytes sent from the Stamp to the DS1620
 ^^^^^^^--------- the bytes are sent least significant bit first
 ^^----------------- P14 on the BASIC Stamp is the clock
 ^^--------------------- P15 on the BASIC Stamp is used to send the data bytes

low 13 <--- this is part of it too, ends the session.

To explain how it works, I'll try an analogy using a stick figure dance. Please refer to Figure 1.5. The BASIC
Stamp is the one with the round head. The DS1620 is the blockhead. The DS1620 starts off with a zero as its
configuration in memory.

The BASIC Stamp starts the SHIFTOUT dance by raising the left hand. That is a wake-up call to the DS1620, and
it means get ready, this message is for you. Then the BASIC Stamp taps out the first 8 beats on the clock pin
with its foot. On each tap, the BASIC Stamp holds his right hand either low to signal a zero, or high to signal a
one. Those are the digits of a binary number, sent out, least significant bit (lsb) first on the data pin.

The DS1620 watches BASIC Stamp’s right hand at each tap. After eight taps, DS1620 has the binary number
12 and recognizes it as a command. The BASIC Stamp knows in advance that DS1620 will interpret 12 as a
command. (The command set is determined by the engineers at Dallas Semiconductor, the manufacturer of
this part).

Experiment #1: Piezo and Temperature Transducer

Earth Measurements Student Guide Version 1.2 • Page 15

It isn’t over yet. The DS1620 is now waiting for another binary number to follow the 12. The BASIC Stamp
taps out 8 more beats, and DS1620 watches BASIC Stamp’s right hand at each tap. This time it gets the
number 2. The DS1620 stores the 2 in its EEPROM memory. Now the DS1620 is configured. The BASIC Stamp
puts down its left hand to signal that the sequence is finished. The BASIC Stamp and the DS1620 are no longer
in communication. All that signaling is taken care of automatically, in less than 1/1000 second, by the
shiftout command. Figure 1.6 shows the same thing as an engineer might draw it.

time: -----------------------one millisecond--------------------->
P13: 000055000 CS
P14: 0000005005005005005005005005000000500500500500500500500500000 Clock
P15: 0000000000055555500000000000000000005550000000000000000000000 Data
 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0
 ^-command 12-----------> ^-data 2--------------->

Figure 1.5: SHIFTOUT Dance
The BASIC Stamp is the one with the round head. The
DS1620 is the “blockhead”. The DS1620 starts off with a
zero as its configuration in memory.

Figure 1.6: Timing Diagram
Engineer’s timing diagram of the SHIFTOUT command as executed from the BASIC Stamp.

Experiment #1: Piezo and Temperature Transducer

Page 16 • Earth Measurements Student Guide Version 1.2

Note that 12 decimal = 00001100 binary, and 2 decimal is 00000010 binary.

When reviewing the timing diagram from Figure 1.6 consider the following:

• P13 starts the exchange by going from 0 to 5 volts. The command ends when P13 goes back down from 5

to 0 volts. P13 is often called the chip select or chip enable.
• P14 is the clock and puts out a series of 16 pulses, 0 to 5 volts, in two groups of 8.
• P15 is the data line and puts out either 0 or 5 volts in each time slot, synchronized with the clock pulses

on P14. The first group forms the 12 (00001100 in binary), and the second group forms the 2 (00000010)
in binary.

• Note the "lsbfirst" parameter for the shiftout command. The least significant bit comes first in the
time sequence.

• This whole transmission of 16 clock cycles takes about 1 millisecond, 1/1000 of a second, and it happens
automatically under the shiftout command.

If you want more explanation, please refer to the BASIC Stamp Manual Version 1.9 where it describes the
shiftout command, where there is also an application note. This is called synchronous serial
communication, because the data is synchronized with the clock ticks that come from the BASIC Stamp. The
BASIC Stamp is commonly referred to as the master and the DS1620 as the slave. That is because the clock
pulses and commands originate in the BASIC Stamp.

Now for the main event: to read the temperature from the DS1620. Enter the following program.

x var byte ' define a general purpose variable, byte
degC var byte ' define a variable to hold degrees Celsius
 ' note: DS1620 has been preprogrammed for mode 2.

outs=%0000000000000000 ' define the initial state of all pins
 'fedcba9876543210
dirs=%1111111111111101 ' as low outputs

freqout 0,20,3800 ' beep to signal that it is running
high 13 ' select the DS1620
 shiftout 15,14,lsbfirst,[238] ' send the "start convertions" command
low 13 ' do the command
 loop: ' going to display once per second
 high 13 ' select the DS1620
 shiftout 15,14,lsbfirst,[170] ' send the "get data" command
 shiftin 15,14,lsbpre,[x] ' get the data
 low 13 ' end the command
 degC=x/2 ' convert the data to degrees C

Experiment #1: Piezo and Temperature Transducer

Earth Measurements Student Guide Version 1.2 • Page 17

 debug ? degC ' show the result on the PC screen
 pause 1000 ' 1 second pause
goto loop ' read & display temperature again

Download the program to your BASIC Stamp.

The debug screen should appear, and you should see the current temperature readings appear once per
second. The readings are in units of degrees Celsius. If you hold your finger on top of the DS1620 chip, you
should see the temperature rise.

Now, what is the room temperature where you are working?

Observe that when you hold your finger on the chip or when you put it
under a lamp or in the sun, it takes some time for it to heat up and for
it to cool down. Once you heat it up, observe that you can cool it down
faster by fanning air across it. What is the temperature near the floor?
On top of your PC? Next to your body? Is it different from the
temperature up high? Try to experiment.

Which one of these temperatures (if they are different) will be the one
you call the room temperature? Usually, HVAC engineers (Heating,
Ventilation and Air Conditioning) prefer to use a temperature reading
that is taken in the shade at a position not too close to sources of heat,
like computers and bodies. This is called a representative temperature.
In the real world, there can be lots of variation over even small
distances and short times. You always have to make some choice about
where and when is the best place and time to make a measurement.

What is going on in the program? First a word about the outs and dirs
statements:

outs=%0000000000000000 ' define the initial state of all pins
 'fedcba9876543210
dirs=%1111111111111101 ' as low outputs

In case of difficulty from an
error in your program:

If you get a message about an error in
your program, you may have typed
something wrong. The Stamp editor
program will position the cursor near
where the error occurred. Do not
take the wording of the error message
literally. Sometimes the wording of
the error message is not appropriate.
Look for any error near the cursor. If
the error message you see is about
"hardware not found" or
"communication error", then be sure
your Board of Education is powered
on (green light on the Board of
Education?!) and that cable to the PC
is connected properly. If all that goes
okay, but the program does not work,
then you will have to decide whether
the problem is in the program or in
your wiring of the DS1620.

Experiment #1: Piezo and Temperature Transducer

Page 18 • Earth Measurements Student Guide Version 1.2

When using the BASIC Stamp, or any microcontroller, there will be pins connected to the outside world, and
those pins can be either an input or an output, and if it is an output it can be either output high or output low.
You are already familiar with the out and dir variables from the “What is a Microcontroller?” series. Here,
with an "s" on the end, the statements control all 16 I/O pins, numbered from 0 to f (Note the apostrophe in
front of the "f"--above that makes it a remark – and it is just there for reference.) The BASIC Stamp I/O pins
are numbered from P0 to P15, where a=10,...,f=15.

It is good programming practice to start off every serious program by putting all of the microcontroller pins
into a known, desirable state. When the BASIC Stamp is first turned on or reset, all of the pins are configured
by default as inputs. This is a fine state for a microcontroller to start up in. You, the designer, are in charge of
making the pins outputs as needed. On the other hand, if a pin is not connected to anything, it is not a good
idea to leave it as input. Unconnected inputs may cause the microcontroller to behave erratically or to draw
excessive power from the battery. The above instructions turn all of the pins on the BASIC Stamp into LOW
outputs. That is what we want at first for the piezo transducer and for the DS1620. All the other pins are
made low outputs just as a matter of principle. Reasons to do otherwise will arise we progress through these
experiments. For more information on the dirs and outs command, please refer to the BASIC Stamp
Manual Version 1.9, page 216.

The main action in the temperature program comes from the SHIFTOUT and SHIFTIN commands.

The first shiftout should look familiar. You see the familiar sequence: It sets P13 high, and then sends one
byte, 238, out to the DS1620, and then sets P13 low again to end the sequence. Inside the DS1620, the 238 is a
command that tells it to start converting temperature into digital codes. The 238 command needs to be sent
at least once after the DS1620 is powered on. Unlike the configuration command, this one is not stored in the
permanent memory of the chip.

Next comes the heart of the routine, to read the temperature from the DS1620. Again you see the familiar
sequence: It sets P13 high, and then sends one byte, 170, out to the DS1620. So far so good. The DS1620
interprets the 170 as a command for it to get the current temperature reading and send it back to the BASIC
Stamp. Now things get interesting. The DS1620, in response to the 170 command, takes control of the data
line. The BASIC Stamp moves on to the shiftin command. Here are the parameters:

shiftin 15,14,lsbpre,[x]

 ^-------- name of the variable to receive the variable
 ^^^^^^------------ the bytes are received least significant bit first

 ^^----------------- P14 on the BASIC Stamp is the clock
 ^^-------------------- P15 on the BASIC Stamp is used to receive the data bytes

low 13 <-- end the command

Experiment #1: Piezo and Temperature Transducer

Earth Measurements Student Guide Version 1.2 • Page 19

P15 on the BASIC Stamp is now an input, whereas for shiftout it was an output. The BASIC Stamp is now
ready to receive data from the DS1620. This is diagrammed in Figure 1.7, and as an engineering timing
diagram in Figure 1.8.

Observe that the BASIC Stamp is still in charge of the timing. The BASIC Stamp is still the master and the
DS1620 is the slave. Here is the timing diagram:

Figure 1.7: SHIFTIN Dance
The BASIC Stamp is the one with the round head. The
DS1620 is the “blockhead”.

Experiment #1: Piezo and Temperature Transducer

Page 20 • Earth Measurements Student Guide Version 1.2

time: -----------------------one millisecond--------------------->
P13: 000055000 CS
P14: 0000005005005005005005005005000000500500500500500500500500000 Clock
P15 0000000055500055500055500055500000005550000005555550000000000 Data

 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0
 ^-command 170----------> ^-data 50-------------->

 BASIC Stamp to DS1620 DS1620 to BASIC Stamp

Each time the BASIC Stamp sends out a pulse on the clock line P14 (taps its foot), the DS1620 signals the next
bit of the temperature byte. It starts with the least significant bit first. The lsbpre means that the BASIC
Stamp looks for the least significant bit before it sends out the first clock pulse. It goes like this, get 1st bit,
pulse clock, get second bit, pulse clock, and so on until it has all 8 bits. The BASIC Stamp stores the data it
receives from the DS1620 in the variable, x.

If the temperature is 25 degrees Celsius, the DS1620 sends back the value 50, which is two times the
temperature. In binary, 50 is 00110010. The bytes that the DS1620 sends out are always two times the
temperature. If the temperature is 25.5 degrees C, then the byte that the DS1620 sends back will be 51. Each
step in x represents 0.5 degrees C. That is the resolution, the smallest change in temperature that the sensor
detects.

Our program then converts the raw value of x to temperature:

degC=x/2 ' convert the data to degrees C

The BASIC Stamp uses integer arithmetic. It throws away the 0.5 degree remainder. Both 50/2 and 51/2
come out as degC=25, and 52 and 53 both come out as degC=26, and so on. There are ways to keep the half
degree resolution, but we won't pursue that here. (But you can do so as a challenge!)

The temperature is sent to the debug screen by this command:

debug ? degC ' show the result

The "?" makes the BASIC Stamp send "degC=" and then the actual value of degC to the debug display screen,
with each entry on a new line.

Figure 1.8: Timing Diagram for SHIFTIN

Experiment #1: Piezo and Temperature Transducer

Earth Measurements Student Guide Version 1.2 • Page 21

Now for a valuable experiment, you should save the program you have
just typed in and debugged. In this series of experiments, we are going
to build up a large program, one piece at a time. This is the first piece
you will be able to reuse.

If you didn't do so already, you may want to enter the remarks attached
to the program. That will reinforce your understanding, and it will also
make it easier for you to pick up the program the next time you look at
it, in Experiment #2.

Decide what you want to name the program. Your instructor will have
directions, depending on how your class is set up to share the PCs. The
program will have an extension of "BS2". Let's say you decide to name
the program "DS1620.BS2"

This is how you save the program in the DOS and Windows versions of
the Parallax BASIC Stamp editor:

STAMP2.EXE (DOS):

Type ALT-S, holding down the ALT key while tapping "S". A dialog box will
appear for you to enter the program name. Type in the name, and press
ENTER. That's it.

STAMPW.EXE (Windows):

Go to File/Save, then navigate to the directory where you want to save
the program, type in the name, and press enter or click Save.

Operational limit:
The DS1620 is perfectly capable of
measuring temperatures below zero,
down to -25. That would be
important if you were out doing
research on snow in Alaska, or if you
were designing a control system for
a freezer. The trouble is, the
program we just wrote does not
handle negative temperatures
correctly. I.e., when the temperature
goes to -1 degrees C, our reading
would be degC=127 instead of
degC=-1. In order to read negative
temperatures, we would have to take
a couple more steps, that would
complicate the program more than
we want to get into at this time. As it
stands, zero degrees is the
operational limit on the low end.
Operational limits are everywhere in
engineering, and they come up for all
kinds of reasons, both in the
software and hardware and in the
properties of materials. This
particular operational limit comes
from a short cut we have taken in
writing the software. That will be
justified so long as the temperature
is above freezing, but becomes a
"bug" if we try to go below freezing.
A famous software operational limit
is (was!) the Y2K bug, where a
software shortcut taken in the latter
half of the 20th century led to an
operational failure or glitches in the
year 2000.

Experiment #1: Piezo and Temperature Transducer

Page 22 • Earth Measurements Student Guide Version 1.2

Challenge!

1. Write a program using a sequence of freqout commands to plays a simple tune. Look up the freqout

command in the BASIC Stamp Manual Version 1.9. You will find an example of how to play Mary Had a
Little Lamb. Okay, you can try Stairway to Heaven, or Beethoven's 5th, if you prefer. You will discover
some of the high fidelity limitations of the piezo transducer.

2. Define a variable degF for Fahrenheit. Display both degrees Celsius and degrees Fahrenheit on the debug

screen. Use either formula:

 degF = degC * 9 / 5 + 32 or degF = x * 9 / 10 + 32

Is one formula better than the other? Why? Observe how the readings change as you gradually change
the temperature of the DS1620 chip.

3. Display degrees Celsius resolved to 0.5 degrees. Recall that the result that comes from the DS1620 is a

binary number where each bit represents 0.5 degrees. To get degrees, we divided by 2 and lost a bit of
information (literally, one bit). You can display the result as 205 to represent 20.5 degrees C. Hint:
multiply by 5 instead of divide by 2.

4. If the temperature is greater than (you choose a value), play an alarm tone on the piezo transducer. Make

the alarm stop when the temperature goes back down. Then modify it so that the alarm continues, even
when the temperature goes back down. Under what circumstances would each kind of alarm be
appropriate?

Experiment #2: Data Logging

Earth Measurements Student Guide Version 1.2 • Page 23

Experiment #2:
Data Logging

The theme of the Data Logging experiment is best answered by the
question: What is data logging and why it is important in earth
measurements? The activities of this experiment are: (1) Design a
user interface by adding a pushbutton to your existing setup on the
Board of Education, then implement single click, double click and

long click to do different things; (2) Learn the basics of read and write with the BASIC Stamp's EEPROM; and
(3) Implement a "talking (Morse code) thermometer".

Constancy punctuated by change: that is one prevalent view of the natural world. In order to understand and
predict events, people often need to keep a record of variables that affect the action. In the field of earth
measurements, the data logger, or data acquisition system, or DAQ for short, is an essential tool. It is a
machine that automatically takes readings and stores them at regular intervals of time (or on some other
basis) into the memory of the machine for later retrieval.

Data is stored in a log file. The term comes from nautical history, where readings of position and depth
soundings on a ship were regularly noted in the Captain's log-book. In fact, some data was collected by
throwing a log (not the book!) off the bow of the boat and counting the time it takes to reach the stern of the
boat. Then they could calculate speed.

These days, much logging is done by computers with sensors attached. Computers are well suited to data
logging - they never get bored or tired, and they can work reliably and very rapidly if required. It can be
difficult, boring, or downright impossible for a real human being to exist in the place and time where data
needs to be collected. Data loggers are found out on buoys floating in the ocean, high on windy mountaintops,
on spacecraft, in collars on grizzly bears, in the stomachs of whales, out in orchards and vineyards, and in
innumerable industrial settings.

Another "buzz word" these days is SCADA, for Small Computer Aided Data Acquisition. That usually refers to
something fancier, a network of sensors and computers, but the general idea is the same. Data loggers may
even communicate to a central hub via TCP/IP connections to the internet, or via long-distance radio links.

In this experiment you will learn important details about the EEPROM memory in the BASIC Stamp II. This is in
preparation for logging readings of temperature, light and water level in the experiments to come. Also, you
will improve on your DS1620 thermometer from the previous experiment, and make it talk (in Morse code).
And as a warm-up, you will work with one pushbutton and the piezo beeper, to make a user interface.

Experiment #2: Data Logging

Page 24 • Earth Measurements Student Guide Version 1.2

Parts Required

Build It

Everyone who has a computer understands what you mean by a mouse, and the actions of click, double-click,
and click-and-hold. These actions are central to the modern computer's user interface. Have you ever
wondered how a program implements those actions? How hard would it be to implement them on the BASIC
Stamp? Well, it is not too hard at all, and we are going to do it, to enable one button on the Board of
Education to perform multiple tasks. There is not going to be room for multiple pushbuttons. One button,
along with feedback from the piezo transducer, is going to have to do it all for our user interface when the
Board of Education is not docked to the PC.

One button, one buzzer.

The Earth Measurements experiments are progressive and build on
the previous projects. Therefore, you'll be adding parts to your
Board of Education. This experiment requires the following parts:

• pushbutton
• 10K ohm resistor
• jumper wires

In Experiment #2 of What's a Microcontroller, "Detecting the
Outside World", you learned how to use two buttons to make
decisions, to control two light emitting diodes. In this experiment
you will build on that project and on the previous Earth
Measurements experiment. You already have an audio annunciator
for output. Now, install a pushbutton for input, as shown in Figure
2.1. The schematic is shown in Figure 2.2.

Figure 2.1: Pictorial
Install a pushbutton (PB) at the very end of the Board of Education,
across from the piezo transducer. Two of the pins will hang over
the edge of the plastic terminal block, so as to leave a couple of
holes free for wiring, as shown. If you straighten the button's pins
you may be able to fit it in the entire lower right-hand 3x3 square
of holes.

Experiment #2: Data Logging

Earth Measurements Student Guide Version 1.2 • Page 25

Program It

The wiring has a pushbutton connected to a pull-up resistor, and the
junction between the resistor and the switch connected to P1 on the
BASIC Stamp. When the pushbutton is not pressed, the voltage at the
BASIC Stamp pin is 5 volts (=Vdd) through the pull-up resistor. But when
the button is pressed, the voltage at the BASIC Stamp pin is low, zero
volts (=Vss). Try the following test program.

' Earth Measurements program 2.1
' test pushbutton
loop:
debug bin in1
goto loop

Figure 2.2: Schematic
Install a pushbutton (PB) at the very end of the BOARD OF
EDUCATION, across from the piezo transducer. Two of the
pins will hang over the edge of the plastic terminal block, so
as to leave a couple of holes free for wiring, as shown. Hold
the loose end of the pushbutton in place with a piece of
strong plastic tape. Wire it up as follows.

• Vss to pushbutton (moved from piezo -)
• pushbutton wired to piezo (-)
• Vdd (+5 volts) wired to row next to piezo
• 10k ohm from Vdd row to pushbutton (+)
• pushbutton (+) to P1.

Note: If you straighten the pushbutton pins you won't need
to hang it over the edge of the breadboard.

Experiment #2: Data Logging

Page 26 • Earth Measurements Student Guide Version 1.2

Run it and observe the debug screen as you push and release the
pushbutton. The program is going around and around the loop,
spewing out the level that it finds at the input. The variable is
in1. It is either high=1, or low=0. The reading should go to zero
immediately when you press the pushbutton, and it should go to
one when you release it. Yes? Go on to the next step. No? Is the
problem in the program, the connection to the BASIC Stamp, or
in the wiring of your pushbutton?

Now let's make the button produce a continuous sound while it is
pressed down.

' Earth Measurements program 2.2
' buzzer
clik: ' loop here while button is up
 if in1=1 then clik ' decide if it is up or down
 freqout 0,8,2500 ' play the tone while it is
'down
goto clik

Run this. When you press the button, you should hear a sound
that may remind you of a cricket chirping. What is going on? If
the button is up, nothing happens, because the if statement sees
a 1 on the input pin and simply sends the program back to the top
of the loop. If the button is down, the if statement sees a zero
on the input pin. The program falls through and executes the
freqout statement. Then it loops back to the top. So long as
the button stays down, the loop with the freqout is executed
over and over.

Recall that the parameter 8 in the freqout command is the
duration of the tone in milliseconds. The tone is 2500 hertz, so in
8 milliseconds, there are 20 cycles of the tone (0.008 seconds *
2500 cycles per second = 20 cycles). Then the tone stops briefly,
while the program goes back up to the top and tests the state of
the P1 pin again. The tone is not produced during that time,
because the BASIC Stamp can only execute one command at a
time (This is an important fact to remember!), If the pin is still
low, though, it soon is back to the freqout command.

What's all this DEBUG stuff?
In these experiments, you will be seeing the
DEBUG statement very often, to put data on
the computer screen. It's name comes from
the notion of debugging. You can put
information on the screen that helps you see
what is going on in your program. Moreover,
you can ask the DEBUG command to send any
messages or data you want to the screen
using a command called SEROUT. It does not
have to have be especially for debugging.

The debug command lets you display the data
on screen in quite a few different ways, using
modifiers and screen control commands. In
experiment 1, we used commands like this to
display temperature data:

debug ? degC
That is a combination command that does 3
things: it prints the variable name and an
equals sign; it prints the decimal value of the
variable; and it moves the cursor down to a
new line. The result looks something like this:
 degC=25
The current little program has a different
form of the debug statement:

debug bin in1
This prints the binary value of the variable
in1. Yes, in1 is a variable, the state of input
pin P1, either low or high, 0 or 1. This form
of the debug command prints only the "0" or
the "1", and not the name "in1", nor the "=",
nor any spaces between the 1s and 0s, nor
does it move down to a new line (until it hits
the full width of the screen). The result looks
something like this:

1111111100000000000111111111111111000
0000

0000001111111111111111111000000011111
...
As we come to new forms, we will describe
them briefly, and refer you to the BASIC
Stamp manual, v1.9 pp 253-256.

Experiment #2: Data Logging

Earth Measurements Student Guide Version 1.2 • Page 27

So the sound looks something like this: ||||||||.||||||||.||||||||.||||||||.||||||||. What you hear is not the pure
2500 hertz tone, but a tone with repeated brief interruptions. These add the low sub-tone you hear in the
sound, at about 110 hertz (about 9 milliseconds for the loop, 1/.009=111). This is indeed kind of like a cricket's
stridulation (song), which is produced when the insect rubs a file on one of its forewings against a ridge on the
other forewing, producing a high pitch, with brief pauses in the back and forth motion of the wings.

As a variation on the above program, try substituting the alternate values 1, 4, 50, 500 and 5000 for the
duration parameter. Run the program each time and listen, and explain to yourself why it sounds as it does.
At the long interval, 500 and especially 5000, note that the tone can go on long after the pushbutton is
released. Why is that? Why doesn't the tone stop immediately when you release the pushbutton?

With the duration set back to 8, tap on the button to send the number "50" or "SOS" in Morse code. Refer to
experiment 1 for the code listing. dit dit dit dit dit="5" and dah dah dah dah dah="0", dit dit dit="S", dah dah
dah="O". It is already a useful program - a Morse code keyer!

Try inserting a pause 6 command on the line after the freqout command. That gives a
||||||||......||||||||......||||||||......|||||||| pattern that may seem even more cricket-like. Crickets, in addition to
their "output transducer", the wings, also have an "input transducer", an ear. It is a membrane located on
their front legs! Crickets are very sensitive to repeating patterns and pulses of sounds. It is their "Morse
code". Their songs are part of their courtship and male rivalry. Entomologists have studied insect
stridulations by reproducing sounds on speakers, and watching what parameters of the sound evoke what
behaviors from the crickets.

Sometimes you don't want an action to keep going all the time the button is down. You want it to happen
once and only once each time the button is pressed. Modify the program so that is reads as follows. (Here is
a new convention to make your task easier - modified lines will be remarked with a ▲, and new lines will be
remarked with a ❒ . Other lines stay as they are.)

' Earth Measurements program 2.3
' single click on pushbutton, action on button down
clik: ' loop here while the button is up
 if in1=1 then clik ' decide if the pushbutton is up(1) or down(0)
freqout 0,100,3800 ' ▲ play the tone once on buttonDown
clik1: ' ❒ loop here until buttonUp
 if in1=0 then clik1 ' ❒ decide if pushbutton is down(0) or up(1)
goto clik

As in the previous program, nothing happens until the button is pressed down. Then the tone plays for 100
milliseconds. Then there is a second holding loop, where the program stays looping until the pushbutton is
released. When that occurs the program goes back up to the top, ready for the button to be pressed again.
One press, one action.

Experiment #2: Data Logging

Page 28 • Earth Measurements Student Guide Version 1.2

That is fine, but think about how a mouse click usually works. Most mouse clicks do not perform their action
until you release the mouse button. That's easy. Move the freqout down after the clik1 loop:

' Earth Measurements program 2.4
' single click on pushbutton, action on button up
clik: ' loop here while the button is up
 if in1=1 then clik ' decide if it is up(1) or down(0)
clik1: ' loop here until pushbutton goes back up
 if in1=0 then clik1 ' decide if it is down(0) or up(1)
 freqout 0,50,1900 ' ▲ play tone once on "buttonUp"
 freqout 0,100,3800 ' ▲ and while we're at it, a better sound!
goto clik ' wait for next keypress.

Now a rising note should occur when the button is released. Logical, right? Be sure you understand totally how
this works.

Now let's make the button take one action if you click it, and a different action if you hold it down for a long
time. This is similar to the action of some computer menus that only appear if you hold the mouse button
down for a longer period of time. Or you may have seen this in a car radio, where you press a preset button
briefly to select a station, but you hold the button down for a longer time (until you hear a beep), to program
a station you want into the preset memory. Appliances from wristwatches to VCRs, and yes, instruments sold
in catalogs that cater to earth scientists, all of them use tricks like this to get to the configuration menus.

The program needs a variable to keep track of the time you hold down the button. Try this: (New code is
shown with a ❒)

' Earth Measurements program 2.5
' pushbutton, action on click and hold
n var word ' ❒ variable to keep track of time
clik: ' loop here while button is up
 if in1=1 then clik ' decide if it is up(1) or down(0)
 n=0 ' ❒ zero the timer
clik1: ' loop here while button is down
 n=n+1 ' ❒ increment the timer
 if n>500 then longclik ' ❒ branch out after a certain time
 if in1=0 then clik1 ' or loop until buttonUp
 freqout 0,50,1900 ' play tone once on buttonUp
 freqout 0,100,3800 '
goto clik ' back to the top

longclik: ' ❒ come here if pushbutton is held down.
 freqout 0,5,3800,2533 ' ❒ sound to show the time has passed

Experiment #2: Data Logging

Earth Measurements Student Guide Version 1.2 • Page 29

longclik1: ' ❒ loop here while button is down
 if in1=0 then longclik1 ' ❒ decide if it is up(1) or down(0)
goto clik ' ❒ back to the top

The program arrives at clik1 when you press the button. While the button is down, the program goes around
and around the clik1 loop. The statement with the in1=0 keeps the loop going repeatedly back to clik1 so
long as the pushbutton remains down. Each time around the loop, the timer variable n increases by one. It is
a race to see which happens first. Do you release the button first, or does the timer reach 500 first? If the
button is released first, well, that is just a single click, as above. The program plays the tone and goes back up
to the top to await another button action. But if the timer n reaches 500 before you release the button, the
program branches to the longclik routine. There it plays one short chirp, to let you know that you've
gotten there, and then waits for you to release the button. And then it goes back to the top.

Where does the magic number 500 come from? The simple answer is "trial and error". The programmer (you!)
tries different numbers until it feels right. Approximately how long (in milliseconds) do you have to hold the
button down before it branches to the longclik routine? Try experimenting - substitute different values in
place of 500.

Think about the order of these two statements in program 2.5:

 if n>500 then longclik ' ❒ branch out after a long time
 if in1=0 then clik1 ' loop until the button goes back up

What would happen if the order of the two statements were switched? If you aren't sure, try it.

Experiment #2: Data Logging

Page 30 • Earth Measurements Student Guide Version 1.2

Advanced Topic: Detecting a Double-click with the BASIC Stamp

Can the BASIC Stamp detect a double click? Sure, it's not too hard. At the end of a single click, the program
has to wait a fraction of a second to see if you are going to press the button again. If you do, then it is a
double click. If you don't, it is a single click. The interval of time is so short that you don't really notice it. The
actual interval is determined by trial and error, a "user preference".

This too needs a timer variable. We will recycle the same timer variable, n, from the last routine. Try this:
(lines remarked with a ❒ are the ones you need to add). Just for fun, we also modified the longclik routine
too, to so that it plays a constant chirp that continues until the button is released.

' Earth Measurements program 2.6
' pushbutton, action on double click
n var word ' variable to keep track of time
clik: ' loop here while the button is up
 if in1=1 then clik ' decide if it is up(1) or down(0)
 n=0 ' zero the timer
clik1: ' loop here while the button is down
 n=n+1 ' increment the timer
 if n=500 then longclik ' branch out if it reaches 500
 if in1=0 then clik1 ' or loop until the button goes back up(1)
 n=0 ' ❒ rezero the timer
clik2: ' ❒ loop here until time runs out
 n=n+1 ' ❒ increment the timer
 if in1=0 then doubleclik ' ❒ branch out if the button goes down soon
 if n<150 then clik2 ' ❒ loop while timer is less than 150
 freqout 0,50,1900 ' here for single click-play tone
 freqout 0,100,3800 '
goto clik ' back for next keypress
end

doubleclik: ' ❒ button is down for second click
 if in1=0 then doubleclik ' ❒ loop until the button goes back up
 freqout 0,50,3800 ' ❒ play a unique falling sound
 freqout 0,50,2533
 freqout 0,50,1900
goto clik ' ❒ back to the top

longclik: ' come here if pushbutton is held down.
 freqout 0,5,3800,2533 ' ❒ play a chirp in a loop
 if in1=0 then longclik ' ❒ loop here until the button goes back up
goto clik ' back to the top

Experiment #2: Data Logging

Earth Measurements Student Guide Version 1.2 • Page 31

If you press the pushbutton once and quickly release it, the program arrives at clik2. Now there is another
race between the button and the timer. This time the button is up to begin with. If you quickly press the
pushbutton a second time before the timer reaches 150, that means you intend a double click. But if the
timer reaches 150 first, that means you just want a single click (or you have slow fingers and need to reset the
preference to a longer time, say 200).

The clik1 and clik2 routines are similar, but observe that they are not identical. What would happen if the
order of these two statements in the program were switched? If it is not obvious, try it, and think it through.

 if in1=0 then doubleclik ' ❒ branch out if the button goes down soon
 if n<150 then clik2 ' ❒ loop while\ timer is less than 150

If you want, you could extend this logic to make a routine respond to a
triple click, like some word processing programs use to select an entire
paragraph. We'll let that be a challenge!

Now, let's move on.

Please save this program you have just built on disk. You can experiment
with it later on in the challenges. We will be using snippets of what you
learned here in programs to come. Use the name "cliks.bs2", or a name
suggested by your instructor.

Snippet:
You can "snip" an action from
one program, and use it (with
changes?) in another. Pieces of
programs that perform specific
actions are called snippets.
Snippets often do not stand on
their own as complete programs.
Programmers often exchange
ideas in the form of snippets.

Experiment #2: Data Logging

Page 32 • Earth Measurements Student Guide Version 1.2

Learning to READ and WRITE, The Basics.

In this series of experiments, we are going to program the BASIC Stamp to collect readings of temperature
and other variables. We want to log them, that is, collect them at regular intervals of time and store them in
a file, and read them out later for comparisons, charts and graphs. We'll take this a step at a time. First, it is
important to understand how the memory on the BASIC Stamp is organized.

You know from "What's a Microcontroller" that the memory available in the BASIC Stamp II is of two kinds,
RAM and EEPROM.

It may help you to think about these kinds of memory if you know where they are located physically. Take a
look at Figure 2.3, which shows a top view of the BASIC Stamp II.

Variables are created in the RAM (Random Access Memory). You store numbers in RAM with statements like
this, using named variables:

 x var byte
 x=76

Variables are very versatile. They can be added and subtracted and used in lots of other kinds of arithmetic,
and they can be parameters in all sorts of commands that are described in the BASIC Stamp Manual Version
1.9. It is very fast to manipulate data in RAM (~200 microseconds per operation), and RAM does not wear out
with use. Trouble is, there isn't very much RAM available on the BASIC Stamp, only 26 bytes. It is not suitable
for storing lots of data. Also, the contents of RAM are lost when the BASIC Stamp loses power, or when the
reset button is pressed. RAM is not suitable for storing "valuable" data that you want to survive when the
power is disconnected.

Figure 2.3: BASIC Stamp Memory
The PIC16C57 chip is the BASIC Stamp's RAM
and central processor. The 24LC16B is the
EEPROM, which holds your PBASIC program and
data we will be storing.

Experiment #2: Data Logging

Earth Measurements Student Guide Version 1.2 • Page 33

Then there is EEPROM. A greater amount of EEPROM memory is available on the BASIC Stamp, 2048 bytes.
Although part of the EEEPROM is used for your PBASIC program code, there will be some left over for data
storage. One great advantage of EEPROM is that it is semi-permanent. The EEPROM memory retains its
contents with or without power and through resets. The disadvantages of EEPROM are that it is relatively
slow (~10 milliseconds to save a byte of data), and, it will wear out after something like 1,000,000 changes at
one spot. To put this in perspective, if one certain location in EEPROM is reprogrammed over and over, once
per second, it would take you about 11 days to get near the 1,000,000 mark. How many seconds are there in
11 days? On the other hand, at once per hour, it would take 114 years to reach that same mark. (How many
hours are there in 114 years?) It is something to think about in planning. In Earth Measurements we may
write to a single location a hundred times at most, nowhere near 1,000,000.

A final disadvantage of EEPROM is that there are only two instructions that can manipulate the data stored
there. Read retrieves a byte, and write stores a byte. That's it. You cannot do arithmetic directly on the data
stored in EEPROM, nor use it as directly as a parameter in a command. You first have to read it into a variable
in RAM, and then manipulate it. And when you are ready, you can write the value of a variable into EEPROM.
With that in mind, the main reason we use EEPROM is to store larger quantities of data, (if we won't have to
change them too often) and where they will stay permanently if we do change them.

In PBASIC, the data statement reserves an area in the EEPROM, and gives it a name:

 log data 7
 ^-----the value 7 is loaded into EEPROM at address, "log"
 ^^^-------------------the name for the address in EEPROM where the data is located.

Read retrieves a byte from an address (in EEPROM) and copies its value to a variable (in RAM). The value of
the byte in EEPROM is not affected by reading it.

 read log, x
 ^-----RAM variable to receive the data

 ^^^---------where in EEPROM to get the data

Write may be used in a program to change the byte stored at an address in EEPROM.

 write log, 25
 ^^----byte size constant
 ^^^---------where in EEPROM to put it

Experiment #2: Data Logging

Page 34 • Earth Measurements Student Guide Version 1.2

or, with a variable,

 write log, x

 ^-----RAM variable
 ^^^---------where in EEPROM to put it

Data in EEPROM is stored as bytes only. (Advanced topic: The RAM variable in the above statements can be a
word, byte, a nib or a bit, but extra bits are padded or dropped on the left end if necessary to fit into a byte-
size EEPROM cell.)

Do not confuse the address, "log" in this case, with the data that is stored there. Try the following program:

' Earth Measurements program 2.7
' distinction of constant, data and variable
dit con 70 ' define a constant
log data 7 ' reserve a byte in eeprom, initially 7
worm data 240 ' reserve a byte in eeprom, initially 240
x var byte ' define two variables
y var byte
read log,x ' read data from eeprom into the variables
read worm,y
debug ? dit, ? log, ? x, ? worm, ? y ' show all quantities

The value of dit is 70, an ordinary constant. The name dit refers to the value itself. The values of log and
worm are constants too, but they have values of 0 and 1, not 7 and 240. The names log and worm refer
indirectly to the data. To read the 7 and the 240, there are two read commands in the program. One read gets
the 7 from EEPROM address log=0 and puts it in the RAM variable x, and the second read gets the 240 from
EEPROM address worm=1 and puts it in RAM variable y. The labels log and worm have the addresses 0 and 1
because PBASIC assigns addresses for data statements starting at 0.

Now modify the above program by adding four more lines at the end.

' Earth Measurements program 2.8
' writing a variable
dit con 70
log data 7
worm data 240
x var byte
y var byte
read log,x
read worm,y
debug ? dit, ? log, ? x, ? worm, ? y
x=x+1 ' ❒ make a new value for x

Experiment #2: Data Logging

Earth Measurements Student Guide Version 1.2 • Page 35

y=y/2 ' ❒ make a new value for y
write log,x ' ❒ change the value stored at log
write worm,y ' ❒ change the value stored at worm

Run this and press RESET on the Board of Education a couple of times with the debug screen active. You
should see the values of x increase by 1 each time, and the value of y halved each time. Then disconnect the
power momentarily, and reconnect it. The first value you see on the debug screen should be the next one in
the series, showing that the EEPROM retains its data when the power is off. What happened to the 7 and the
240 that were there when you first ran the program? They are gone. The write statement changed those
values. The only way to restore the initial condition is to RUN the program again from the PC. Try it.

There is additional information about the data directive on pages 228-230 of the BASIC Stamp Manual
Version 1.9, and also discussion of read (p. 302) and write (p. 341). You will be seeing more of this in
experiments to come!

The EEPROM is often used to store settings and calibration constants that may need to be changed
occasionally. It might be a parameter that tells how hot the temperature has to be before turning on a fan, or
how many seconds have to pass before recording data in a log file. Here is a fun demo program that plays a
musical scale when you single-click the button. How many notes it plays depends on a parameter that is
stored in the EEPROM. If you hold down the button, instead of single-clicking it, the program enters a
calibration routine where you will hear a series of ticks. Release the button after a few ticks, and then single
click the button again.

' Earth Measurements program 2.9
' saving a setting in eeprom
dit con 70 ' length of a dit, milliseconds
how data 1 ' initial number of sounds
many var word ' RAM variable for number of sounds
n var word ' multipurpose variable
tone var word ' the frequency of the sound

clik: ' loop here while the button is up
 if in1=1 then clik ' decide if it is up(1) or down(0)
 n=500 ' initialize the timer for longclik
clik1: ' loop here until buttonUp or timeout
 n=n-1 ' decrement the counter for long click
 if n=0 then longclik ' timeout!--goto longclik with n=0
 if in1=0 the clik1 ' decide it the button is down(0) or up(1)
 tone=4519 ' play tones, this is the first tone
 read how, many ' get how many to play from eeprom
 for n=1 to many ' and play them
 freqout 0,dit,tone ' sound, duration dit, frequency tone
 pause dit ' brief silence

Experiment #2: Data Logging

Page 36 • Earth Measurements Student Guide Version 1.2

 tone = tone**61858 ' next note of chromatic scale
next ' loop back to for if not done.
goto clik ' from the top, await keypress
end

longclik: ' enter here with n=0
 freqout 0,2,3800 ' short tick
 pause 400 ' short delay (time for response)
 n=n+1 ' increment n
 if in1=0 then longclik ' loop until buttonUp
 write how,n ' store the new parameter
goto clik
end

Try to figure out how it works in detail. It consists of snippets from the foregoing button and memory
routines. (The mathematical formula, tone = tone**61858, generates the chromatic scale, but you don't have
to understand that here.) Do understand the role of read and write. There is one read command to fetch
the number of notes to play, and one write command to store the new number selected by the user.

To test your understanding, modify the program as follows:

1. Add a data statement with a label of "dur" and make 70 milliseconds it's initial value.
2. Change "dit" from a constant to a byte variable.
3. At the outset of the program read the value from "dur" into the variable "dit". At this point, the

program should run, just as it does now.
4. At the end of the longclik routine, before it goes back to "clik", have it wait for you to press and

release the button a second time.
5. During this second time the button is down, have it increment the value of "n" each time around a loop.
6. When the button is released, write the value of n into the address "dur".
7. Verify that the program runs, and that the longclik routine allows you to change both the number of

notes to be played, and also the duration of the notes.

Talking Thermometer, Morse Code Revisited

Now load in the program that you saved in Experiment 1. To do this, press ALT-L if you are using the DOS
version of STAMP2.EXE, or press CTRL-O or use the mouse if you are using the Windows version, STAMPW.EXE.

Experiment #2: Data Logging

Earth Measurements Student Guide Version 1.2 • Page 37

The program from Experiment #1 reads the temperature from the DS1620 chip and displays it on the debug
screen. After you load the program, run it to make sure that it still works. You never can be sure, maybe you
accidentally bumped a wire on your Board of Education, or maybe someone was fooling around with your
program on disk. It is a wise practice to start each step of building a complex system at a point where you
know everything is working.

As it stands, the program displays the temperature on the debug screen once per second. Let's modify it, to
make the piezo transducer send the temperature using Morse code. The Morse code in the first experiment
of Earth Measurements was an introduction - it only sends the number 50. We need a subroutine that can
sound out any arbitrary two-digit number we throw at it. And we'll change the program so that your new
pushbutton will initiate the temperature reading. Starting with the program from Experiment #1, the new
lines are remarked with a ❒ , and the changed lines with a ▲.

' Earth Measurements program 2.10
' talking thermometer, using morse code.
dit con 70 ' ❒ milliseconds for Morse dit
dit2 con 2*dit ' ❒ constants related to dit
dah con 3*dit ' ❒ ditto
mc var byte ' ❒ temporary for Morse pattern
xm var byte ' ❒ morse input variable
j var nib ' ❒ index for digits to send
i var nib ' ❒ index for dits and dahs
x var byte ' define a general purpose variable, byte
degC var byte ' define a variable to hold degrees Celsius
 ' note: DS1620 preprogrammed for mode 2.
 ' high 13:shiftout 15,14,[12,2]:low 13

outs=%0000000000000000 ' define the initial state of all pins
 'fedcba9876543210
dirs=%1111111111111101 ' ❒ as low outputs
 ' ❒ except P1, an input for a pushbutton

freqout 0,20,3800 ' beep to signal that it is running
high 13 ' select the DS1620
shiftout 15,14,lsbfirst,[238] ' send the "start conversion" command
low 13 ' finish the command
clik: ' ❒ loop here while the button is up
 if in1=1 then clik ' ❒ decide if the button is up(1) or down(0)
clik1: ' ❒ loop here while the button is down
 if in1=0 then clik1 ' ❒ decide if the button is down(0) or up(1)
high 13 ' select the DS1620
 shiftout 15,14,lsbfirst,[170] ' send the "get data" command
 shiftin 15,14,lsbpre,[x] ' get the data

Experiment #2: Data Logging

Page 38 • Earth Measurements Student Guide Version 1.2

low 13 ' end the command
degC=x/2 ' convert the data to degrees C
debug ? degC ' show the temperature on the debug screen
xm=degC ' ❒ morse routine expects data in variable xm
gosub morse ' ❒ to the subroutine
goto clik ' ❒ back to wait for button again

morse: ' ❒ enter here to send byte xm as morse code
 for j=1 to 0 ' ❒ send 2 digits, tens then ones.
 mc = xm dig j ' ❒ pick off the (j+1)th digit
 mc = %11110000011111 >> mc ' ❒ set up pattern for morse code
 for i=4 to 0 ' ❒ 5 dits and dahs
 freqout 0,dit2*mc.bit0(i)+dit,1900 ' ❒ send pattern from bits of mc
 pause dit ' ❒ short silence
 next ' ❒ next i,dit or dah of five
 pause dah ' ❒ interdigit silence
 next ' ❒ next j,digit of two
return ' ❒ back to main
end

Run the program and try it by clicking the button. Listen to the Morse code as you make the temperatures go
up and down. If you are not a ham or Navy radio operator, you may need a little practice to hear the numbers
of the Morse code. But it shouldn't take long. You can read them on the screen as you listen. You can heat up
the DS1620 temperature sensor with you finger, or by placing it under a lamp or in the stream of hot air from
a hair dryer.

This talking thermometer is a useful instrument already. A visually impaired person could use it. Or how
about a biologist doing research on bats in a dark cave? (Listening on an earphone-bats are very sensitive to
high-frequency sound.) Can you think of other situations where this device might be useful?

Please save this program as it stands now on disk. Name of program? (degCtalk.bs2)

Now let's look at the program step by step. (The remainder of this experiment will be detailed explanation of
the Morse code routine - no more programs for you until the challenges!)

Several variables and constants are defined at the top of the program. Some of these you will recognize from
Experiment #1, where they appeared in the routine to send the number 50 as Morse code. There is the basic
length of the dit in milliseconds, and the dah, which is defined as three times the length of the dit, and a new
one, dit2, which is defined as twice the length of the dit. There are a couple of other variables, too, xm and mc,
that we'll talk about in connection with the Morse code routine below.

Experiment #2: Data Logging

Earth Measurements Student Guide Version 1.2 • Page 39

P1 is now an input, for the pushbutton. P1 is set to input by making its bit in dirs equal to zero. The
following statements fix the input and output state of all 16 pins of the BASIC Stamp.

outs=%0000000000000000 ' define the initial state of all pins
 'fedcba9876543210
dirs=%1111111111111101 ' as low outputs
 ^--------------' this is now an input for the pushbutton

Note the single change from the original program. If we do not set that bit in dirs equal to zero, then the
program cannot read the pushbutton. If you don't believe it, try it and see what happens. You may wonder
about the programs in the first part of this experiment, where we were reading the state of the pushbutton
very well with neither a dirs nor an outs command. The reason is that the BASIC Stamp always starts up
with all its pins as inputs. As a matter of good programming, we are turning them all into outputs, except the
ones we truly need to be inputs. When we make a pin like P1 into an input, it doesn't matter what the state of
the corresponding outs bit is. The outs bit has no effect when the pin is defined as an input.

The central idea of the Morse subprogram is held in the binary pattern, %11110000011111. The % sign marks
it as a binary number. This is the pattern of zeros and ones as they are actually stored in binary brain of the
BASIC Stamp. This binary number does have a standard numerical value (=15391), but the numerical value is
not important here. Quite often in computer science, you have to think of computer data as something other
than a standard numerical value. Think of this as a pattern on an audio tape. If you put a playback head (by
analogy) at the far left and play back 5 bits moving to the right, you come up with 11110. This is going to
translate in Morse code to dah dah dah dah dit, a nine. (It is not a binary number nine, which would be 1001 -
instead, it is a pattern for Morse code number 9 - there are many ways to represent numbers!) Depending on
where you start on the "tape" different code patterns result, in fact, the total pattern is arranged to give the
code patterns for the Morse code numerals numbers in order. It's a trick.

11110000011111
^^^^^-------------> 11110, dah dah dah dah dit nine, playing back five bits
 ^^^^^------------> 11100, dah dah dah dit dit eight
 ^^^^^-----------> 11000, dah dah dit dit dit seven
 ^^^^^----------> 10000, dah dit dit dit dit six
 ^^^^^---------> 00000, dit dit dit dit dit five
 ^^^^^--------> 00001, dit dit dit dit dah four
 ^^^^^-------> 00011, dit dit dit dah dah three
 ^^^^^------> 00111, dit dit dah dah dah two
 ^^^^^-----> 01111, dit dah dah dah dah one
 ^^^^^----> 11111, dah dah dah dah dah zero

Experiment #2: Data Logging

Page 40 • Earth Measurements Student Guide Version 1.2

Now let's take the Morse code routine step by step, and really dissect it. First, you have to recognize that this
is a subroutine, that starts with the label, "morse:", and ends with the "return" instruction. The main
routine, after it acquires the temperature reading in degC from the DS1620 sensor, and puts it in the variable
xm; it executes a gosub morse command. The morse subroutine does its thing and then returns execution to
the instruction just after the gosub morse instruction, which is "goto clik". By writing the morse routine
as a subroutine, we will be able to use it over again at different points in a our program, as it develops.

Variable xm is the one that will be sounded out as Morse code. In the morse subroutine itself there are two
for . . . next loops, one inside the other. The outside loop has an index j:

 for j=1 to 0 ' ❒ send 2 digits, msd 1st.
 mc = xm dig j ' pick off the jth digit
 mc = %11110000011111 >> mc ' ❒ set up pattern for morse code
 ' more morse here
 next ' ❒ next digit of two
return ' ❒

When the program first arrives at the morse routine, it first sets j
equal to 1, and then continues with j=1 all the way through the loop,
including everything in "more Morse stuff". The keyword, next, is the
turning point in the for-next loop, and at that point the program jumps
back up to the corresponding for, sets j=0, and executes all the way
through again, to the next. Note that the BASIC Stamp knows how to
count backwards! After j has taken on the values 1 and 0, that's it, the
loop ends, and the program returns to the main program, and back to
clik.

There are two math statements in this outer loop. The first one is:

 mc = xm dig j.

This "dig" is an operator, kind of like "plus" or "divided by". It sits
between two numbers, xm and j, and returns the (j+1)th digit of xm. It
is easiest to illustrate with a specific example. Suppose the value of
xm=25. On the first time through the loop, the value of j is 1, and the

result of (mc = 25 dig 1) will be (mc=2), because 2 is the tens digit of 25. On the second time through
the loop, the result of (mc = 25 dig 0) will be mc=5, because 5 is the ones digit of 25.

Index and Pointer:
An index is a variable that steps
through a sequence of values. For
example, "j" in the for-next loop steps
through the values of 1 and 0. A
pointer is a variable that specifies
where in memory, or where in some
ordered set, to retrieve information.
For example, the variable "j" is both an
index and a pointer. It points to a digit
in the variable xm. The index "I" in this
same program is a pointer to the bits
(binary digits) of the variable mc. In
experiments to come, we will use
indices and pointers to refer to the
data in the EEPROM log, as in, 1st

reading, 2nd reading, and so on.

Experiment #2: Data Logging

Earth Measurements Student Guide Version 1.2 • Page 41

 25
 j=1 point to the tens digit ----^
 j=0 point to the ones digit -----^

The logic of this can be extended to larger numbers, for example, j=3 would point to the thousands digit.
However, in this Morse code routine we will only need 2 digits.

Now we have a number between 0 and 9 inclusive in the variable mc. The next statement sets up the pattern
for the Morse code.

 mc = %11110000011111 >> mc ' ❒ set up pattern for morse code

The symbol >> is another operator that goes between two numbers. The constant, %11110000011111, is the
binary pattern we were talking about above. The >> operator is one that operates specifically on binary
patterns. It is called a shift operator. (Shifts are very important in computer science.) It shifts the binary
pattern to the right a certain number of places (mc places) and drops that same number of bits off the right
end. Again, to illustrate, the first time through the loop, the digit is 2 when the program arrives at this
command:

 BEFORE mc= 11110000011111 >> 2
 AFTER 111100000111 ' pattern shifted two to the right
 \11 ' two bits dropped
 ^^^^^--------- 5 bits are the morse pattern for "2"

And the second time through the loop, the digit is 5:

BEFORE mc= 11110000011111 >> 5
AFTER 111100000 ' pattern shifted five to the right

 \11111 ' five bits dropped
 ^^^^^--------- 5 bits are the morse pattern for "5"

What has happened is that the Morse code pattern has ended up in bits 4 to 0 of the variable mc. In the
example, 00111 represents 2 in Morse code, and 00000 represents 5. Earlier we talked about moving a
"playback head" over the "tape"; here we have moved the "tape" over the "playback head", ready to play back
the five bits on the right.

Experiment #2: Data Logging

Page 42 • Earth Measurements Student Guide Version 1.2

Now the Morse code pattern is in position, and we come to the inner for-next loop:

 for i=4 to 0 ' ❒ 5 dits and dahs
 freqout 0,dit2*mc.bit0(i)+dit,1900 ' ❒ send pattern from bits of md
 pause dit ' ❒ short silence
 next ' ❒ next dit or dah of five
 pause dah ' ❒ interdigit silence

The index here is i, and it runs through 5 values, counting backwards from 4 to zero. The freqout command
plays a dit or dah for each time around the inner loop. Between each sound, there is a short pause equal in
width to a dit. After the 5 dits and dahs of one digit are played, there is a longer pause, equal in width to a
dah, and then the program loops back to get the ones digit, and play it's five bits in the same way.

The freqout command is familiar, except here the duration is neither a constant nor a simple variable. It is
an expression. PBASIC lets you do that. The expression is:

 dit2*mc.bit0(i)+dit
 ^^^^^^^^^^-------this has a value of either 0 or 1.

Let's start out by stating that mc.bit0(i) is a variable that has a value of either zero or one. So the
statement reduces with simple multiplication and addition to either,

 dit2 * 0 + dit ==> dit
 or
 dit2 * 1 + dit ==> 3*dit ==> dah

The freqout command plays a dit or a dah, depending on the value of the mystery variable.

So what exactly is mc.bit0(i)? One powerful feature of PBASIC is that it allows you easy access to individual
bits in that byte. The byte, mc, has 8 bits. The notation, mc.bit is called a modifier of the byte variable mc. It
is really just name for the least significant bit of that byte. The second bit is mc.bit1, and so on mc.bit4, is
the 5th bit. It is simply a way of naming the bits, a syntax that is built into the PBASIC language.

There is still another way to refer to those same bits, using a variable as a pointer to bits in the byte. This
notation is md.bit0(i). For example, md.bit0(4) and md.bit4 both refer to the same bit. Literally it
means, "the fourth bit up from md.bit0". See the BASIC Stamp Manual, v1.9 pp. 221-224 for more explanation.

Experiment #2: Data Logging

Earth Measurements Student Guide Version 1.2 • Page 43

Here is the way it works:

00111 <-- these are the five lower bits of the byte variable mc
 ^---- mc.bit0 or mc.bit0(0) different names for the same bit
 ^----- mc.bit1 or mc.bit0(1)
 ^------ mc.bit2 or mc.bit0(2)
 ^------- mc.bit3 or mc.bit0(3)
^-------- mc.bit4 or mc.bit0(4)

The variable i is the pointer. The power of this indirect, or array naming, is that the program loop (for i=4 to
0) can step through the bits of the byte variable, mc, one by one, and pick off the binary 0 or 1 values of the
individual bits. Those are the bits that need to be sounded out as 0=>dit and 1=>dah. Here is another way
we could have played the five dits and dahs, without using a for-next loop:

 freqout 0,dit2*mc.bit0+dit,1900 ' ❒ first bit
 pause dit ' ❒ short silence
 freqout 0,dit2*mc.bit1+dit,1900 ' ❒ second bit
 pause dit ' ❒ short silence
 freqout 0,dit2*mc.bit2+dit,1900 ' ❒ third bit
 pause dit ' ❒ short silence
 freqout 0,dit2*mc.bit3+dit,1900 ' ❒ fourth bit
 pause dit ' ❒ short silence
 freqout 0,dit2*mc.bit4+dit,1900 ' ❒ fifth bit
 pause dit ' ❒ short silence

You see, this refers directly to each bit, one at a time. But it comes out much shorter, and more elegant (?)
using the for-next loop and the index as a pointer to the bits.

Whew! That was a lot of explanation for a short stretch of program. But it contains some advanced ideas.
How to interpret a number as a pattern. Index and pointer. How to extract decimal digits. The dig and shift
operators, how to use an expression as a parameter. How to use array modifiers of PBASIC variables. These
are the stuff of programming a microcontroller.

Experiment #2: Data Logging

Page 44 • Earth Measurements Student Guide Version 1.2

Challenge!

Hook up an led to P5, so that high 5 will turn it on. Write a program to turn the led ON when you click the
button once, and OFF when you click the button again. (Push on, push off action). Hint: although there are
several ways to do this, the toggle command may help. See page 329 of the BASIC Stamp Manual Version 1.9.

(A) Make a BS2 program that prints "working" on the debug screen, and plays a sound, once each time you

click the button. Hint: print a message on the screen using commands like debug "working",CR
' CR stands for "carriage return".

(B) Then program it so that if you hold the button down while you press and release RESET on the Board of

Education, it will not go immediately to the "working" routine. Instead it will print "I await your
instructions" on the debug screen, play a different sound, and delay until you click the button again.
(Think about printers, how some will print a "test page" if you hold down some button on the front panel
as you turn the printer on.)

The program 2.10 measures the temperature in degrees Celsius.

(A) Modify the program so that it displays degrees Fahrenheit, and plays it in Morse code.

(B) Modify the Morse code routine so that it will play three digits instead of just two, in case the Fahrenheit

temperature goes above 99. (C-advanced) If you want to get fancy, make it so that it will not play leading
zeros, that is, if the reading is 76 degrees F, it will play "7","6", not "0","7","6").

Then try this:

(A) Start with a byte of data, initially zero, stored in EEPROM. Each time the button is single-clicked,

increment the byte in EEPROM by one (read, increment, write), and display the current value on the
debug screen.

(B) When the value reaches 7, print the words "access denied" on the debug screen, and make a sound and

blink the led on and off repeatedly. At that point, if you reset the stamp or remove the power and then
restore it, the "alarm" should come on right away (read & decision at top of program.).

Experiment #2: Data Logging

Earth Measurements Student Guide Version 1.2 • Page 45

(C) (Advanced) Think of a way, using a special action on the button, like holding it down for a long time, to
reset the value in EEPROM to zero. That will allow access so you can click the button 7 more times before
the alarm re-sounds and locks you out.

Write a program that plays a unique sound if you triple click the pushbutton.

Experiment #2: Data Logging

Page 46 • Earth Measurements Student Guide Version 1.2

Experiment #3: Temperature Probe for Micro-Environments

Earth Measurements Student Guide Version 1.2 • Page 47

Experiment #3:
Temperature Probe for
Micro-Environments

The theme of Earth Measurements Experiment #3 is to
connect a temperature probe mounted at the end of a
cable that can reach out away from the Board of
Education, to monitor microenvironments. A well-
calibrated sensor, with good resolution, will achieve the
most accurate results. The specific activities of this

experiment consist of: (1) Capacitor on the BASIC Stamp input, and the rctime command; (2a) Temperature
measurement using an AD592 probe, with calibration in an ice bath; and (2b) Comparison of calibration with
the DS1620 at room temperature; (3) Automatic calibration using the BASIC Stamp’s EEPROM; and (4) Talking
(Morse code) temperature experiments--solar radiation--wet-bulb/dry bulb--wind chill.

Parts Required

For this experiment leave all parts from the previous
experiments in place on the Board of Education. The
following parts are required:

(1) AD592 temperature probe. Please see Appendix B if you would prefer to build your own instead of using
the probe included with the Earth Measurements Parts Kit.

(1) nylon cable clamp or tie-wrap (to provide strain relief for the probe).
(1) 0.1µF monolithic capacitor
(2) 0.22µF film capacitor
(2) 100Ω resistor
(2) 100KΩ
(3) jumper wires
(1) conductivity probe (device with two 2" screws 0.4" apart mounted on a scrap PCB with wires)
(1) Ice bath. The best ice bath is made with crushed ice and water in a thermos bottle. If you don't have a

thermos, use a couple of large nested foam cups, and wrap the whole thing outside with aluminum foil.

Experiment #3: Temperature Probe for Micro-Environments

Page 48 • Earth Measurements Student Guide Version 1.2

Build it!

Analog Temperature Sensor

It is often important to extend sensors out away from the recording
instruments, so that measurements can be made in micro-environments. In
the natural world there can be much variation from place to place and time

to time. For example, the temperature of a leaf on a plant in the sun can be significantly different from the
surrounding air temperature. The leaf forms its own micro-environment. And as plants grow, they create a
unique micro-environment under their canopy. Often measurements are needed in several places at once and
are fed back to one centrally located instrument. For example, an agricultural weather station will measure
wind high above the ground, soil moisture underground, and other parameters at points in between. This
means that sensors have to be mounted on cables to reach all those separate micro-environments.

In Experiment #1 you learned about the DS1620 smart temperature sensor. One nice thing about that sensor
is that it returns readings directly as digital numbers. But one disadvantage it has is that it is a chip with 8
pins, hard to turn into a probe that can be used apart from a circuit board. In this experiment you will learn
about a different kind of temperature sensor, the AD592. It is easy to incorporate into a probe mounted on a

single pair of wires. This AD592 is an analog temperature sensor.
Analog means that its signal is a continuous electrical value (microamps),
proportional to temperature. Analog is the opposite of digital, which
means that readings are returned as a code of discrete values (zeros and
ones). The AD592 is a "classic" technology that has been proven through
many years. Many of the signals you will encounter in the science of
Earth Measurements, or in many fields of engineering for that matter,
are analog signals. Chips like the DS1620 have analog sensors at their
heart, and engineers have worked very hard to give the DS1620 its
digital smarts.

Analog sensors require a different kind of interface to the BASIC Stamp
II. In this experiment you will learn about the rctime command. You
may know about analog-to-digital converters, a kind of electronic chip
that is dedicated to doing those conversions. The rctime command is a
rudimentary analog-to-digital converter that is built into the BASIC
Stamp II. To introduce the rctime command, you will connect a
capacitor to the BASIC Stamp input and review the properties of
capacitors. Once you have the rctime command reading the
temperature sensor, you will learn how to calibrate it, so that it will read
the correct temperature, despite variations in the parts that are
provided to build the circuit.

Analog temperature sensor:
The microamp current produced by
the AD592 is what is called an
"analog" of temperature. Microamps
is not the same as temperature, just
as apples are not the same as
oranges. Considering an analogy
between a capacitor and a water
tank, here the analogy is between the
temperature and electrical current.
This is the basis of "analog" sensors.
Other temperature transducers may
transduce temperature to voltage or
resistance or capacitance. The signals
on both sides of the analogy are of a
continuous nature, with infinite
gradations of strength from low to
high. Analog is the opposite of digital,
where the signals are transmitted as
digital codes of zeros and ones.

Experiment #3: Temperature Probe for Micro-Environments

Earth Measurements Student Guide Version 1.2 • Page 49

Once you have the probe on a cable, you can extend it out to measure temperature in micro-environments in
your surroundings.

BASIC Stamp Pins, Capacitors, Review of the BASICs

You probably already understand that the 16 general purpose I/O pins on the BASIC Stamp that can be in one
of three distinct states at any given time. As shown in Figure 3.1, this is like three-position switch:

(1) The switch is connected to Vdd=+5 volts, as shown here, output HIGH. Current can flow out of the pin.

(sourcing current from the +5 volt (Vdd) power supply).

(2) The switch is connected as an input. Zero current flows in or out of the pin. As an input, the internal

BASIC Stamp circuitry monitors the voltage at the input pin. Less than 1.3 volts is seen as low (0). Greater
than 1.3 volts is seen as high (1).

(3) The switch is connected to Vss=0 volts, output low. Current can flow into the pin (sinking current to

ground - Vss).

Simple commands like high 5 or low 5 or input 5 put the named pin instantly into one of these three
states. Many of the commands in the PBASIC language work by playing fancy games with the pins. For
example, the freqout command makes a sound by flipping the internal switch rapidly between the high and
low output states. The shiftin and shiftout commands work by coordinating the activity on several pins
at once, some as outputs jumping from high to low, and others as inputs synchronized to the action. Here we
will be introducing the rctime command, which works by switching a pin from output to input and timing
how long it takes for the voltage at the pin to cross the 1.3-volt threshold level.

Figure 3.1: BASIC Stamp I/O Pins
Three positions exist in this switch: (1) Vdd +5V;
(2) input to act as low or high; and (3) switch is
connected to Vss +0V.

Experiment #3: Temperature Probe for Micro-Environments

Page 50 • Earth Measurements Student Guide Version 1.2

The change in voltage is brought about by external circuitry, usually a resistor (R) and a capacitor (C). The
important point we want to emphasize here is that practically zero current flows when the pin is an input - it
just looks.

First, a brief review of capacitors. Please bear with us if you already understand how capacitors work. The
analogy is a tank of water, with an inlet pipe and an outlet pipe. The tank stores water, analogous to how the
capacitor stores electrical charge. Figures 3.2 and 3.3 demonstrate this point.

Figure 3.2: Analogy, capacitor charging
Water flows (amps) into the tank and the level
(volts) rises. Higher inflow means higher rate of
rise. The flow through the pipe can be limited
by resistance (ohms) in the pipe, or by the water
pressure at the other end of the pipe.

Figure 3.3: Analogy, capacitor discharging
Flow (amps) discharges from the tank and the
level (volts) falls. The flow can be slow, a trickle,
or fast, a deluge. If both inflow and outflow are
zero, then the level stays constant. There can
be unintentional flows, called leakage (amps).

Experiment #3: Temperature Probe for Micro-Environments

Earth Measurements Student Guide Version 1.2 • Page 51

Capacitors come in a wide range of sizes, measured in picofarads up to farads. This does not refer to physical
size, but to the capacity to store charge, which depends on the material of which the capacitor is composed.
Two capacitors of exactly the same physical size can have vastly different capacitances. We will be using
values in this experiment that are 0.01 to 0.22 microfarads (uF).

Simple Resistance Detector

Hook up a 0.1 capacitor, a 100Ω resistor, and the conductivity sensor as pictured in Figure 3.4. The schematic
is shown in Figure 3.5.

Figure 3.4: Capacitor and sensor on P10
The capacitor will probably be marked "104" or ".1"
in tiny lettering. The orientation of this type of
capacitor does not matter.
• 0.1 µf from pin 4 of DS1620 to node A
• 100Ω resistor from capacitor node A to P10
• conductivity sensor from node A to Vdd (+5

volts)

Experiment #3: Temperature Probe for Micro-Environments

Page 52 • Earth Measurements Student Guide Version 1.2

Figure 3.5: Simple Resistance Detector
Schematic

Experiment #3: Temperature Probe for Micro-Environments

Earth Measurements Student Guide Version 1.2 • Page 53

Once you've got the circuit built, load the following program:

' Earth Measurements program 3.1
' simple demo of a capacitor on a BS2 pin.
 v var bit ' a bit-size variable to hold the input state
 loop1: ' come here to discharge the capacitor
 low 10 ' discharge the capacitor to 0 volts
 freqout 0,5,3500 ' signal event
 debug CR ' new line on screen
 input 10 ' make the pin an input
 loop2: ' loop here while the input is <1.3 volts
 v=in10 ' read the input
 debug bin v ' show it
 pause 99 ' 0.1 second pacing
 branch v,[loop2,loop1] ' back to loop1 if voltage>1.3

The first instruction in the program discharges the capacitor to zero volts. The capacitor discharges very fast,
like a big pipe dumping water from the tank out onto the earth. Current from the PIC microcontroller on the
BASIC Stamp can discharge the capacitor through the 100 ohm resistor in about 25 microseconds, which is
much less than the 10 millisecond duration of the freqout command. Then comes the input 10 instruction.
The pin instantly becomes an input. Let it sit for a minute or two without touching anything. Do you hear
beeps or see any 1s on the screen? No? Don't be surprised if the capacitor stays discharged, because there is
no source of current to charge it. All those zeros on the screen mean that the capacitor stays discharged.

Now touch the two leads of the conductivity sensor with your fingers. Experiment! The result should depend
on how sweaty or wet your fingers are (a lie detector?), and how hard you pinch. There are leakage paths
through the moisture on your fingers, and through your skin and tissue. Try dipping the conductivity sensor in
water, or touch it to wet paper, or touch it to a heavy pencil line drawn on paper. You can also substitute
100K ohm resistor. Your finger short-circuits the capacitor as shown in Figure 3.6

Figure 3.6: Short-Circuit
Touch the two screws that comprise the
conductivity probe. Your finger will short-
circuit the capacitor.

Experiment #3: Temperature Probe for Micro-Environments

Page 54 • Earth Measurements Student Guide Version 1.2

We need to say a word here about safety. The voltage and current in this circuit are very small, five volts and a
few microamps. If you are ever unsure about a circuit, always err on the side of safety!

The input pin on the BASIC Stamp is acting as a "comparator". This is a technical term in electronics for this
device that gives a yes or no answer, 1 or 0, to the question, "is the voltage level at P10 greater than or less
than 1.3?" This 1.3-volt threshold is fixed by the PIC microcontroller in the BASIC Stamp II, and there is
nothing we can do to change it. Figure 3.7 shows how this works.

The program uses the branch instruction, which may be new to you. It instructs the BASIC Stamp to go to one
of two possible destinations.

 branch v,[loop2,loop1] '
 ^^^^^----- go here if v=1 (capacitor voltage >1.3 volts)
 ^^^^------------ go here if v=0 (capacitor voltage <1.3 volts)
 ^------------------ branch on this variable

If the voltage level on the capacitor rises to 1.3 volts, then variable v will become equal to 1, the program will
be directed back up to loop1 to discharge the capacitor to zero volts, make a tone, and print a line return on
screen. Otherwise, the program is directed to loop2, where it continues to read the input and print zeros on
the screen. The variable v is a bit; either 0 or 1, so this branch instruction covers all the possibilities, loop1
or loop2. Another way to write this would be,

 if v=1 then loop1 ' go back and discharge the capacitor
 goto loop2 ' or just watch and wait

Branch is more concise, better programming when there is a clear set of choices. For more about the branch
instruction, see the BASIC Stamp Manual Version 1.9, pg. 247.

Figure 3.7: Capacitor Discharge
Over and over, the capacitor is discharged to
zero volts, and then more or less rapidly
charges back up to the 1.3 volt threshold. By
varying the resistance of the probe, you are
affecting how fast the voltage level rises.

Experiment #3: Temperature Probe for Micro-Environments

Earth Measurements Student Guide Version 1.2 • Page 55

Resistance Detector Using RCtime

Now type and run the following program:

 ' Earth Measurements program 3.2
 ' simple demo of the RCtime command.
 rct var word ' a word variable
 n var byte ' variable for the bar graph
 low 10 ' discharge the capacitor
 loop1: ' loop here forever
 RCtime 10,0,rct ' time for the volts to rise to 1.3
 low 10 ' discharge the capacitor to 0 volts
 debug ? rct ' show the time
 n=(rct-1)/2048+1 ' calculate length of bar graph
 debug rep "*"\n,cr ' display ascii art bar graph
 goto loop1

Again experiment, with different wetness and pressure. What sorts of rct values do you observe?

Here are the parameters of the RCtime command:
 RCtime 10,0,rct
 ^^^----- variable to hold the result (In units of 2 microseconds)
 ^--------- command starts with in10=0, ends when in10=1
 (alternatively, start with in10=1 and end with in10=0)
 ^^----------- use pin 10 for this RCtime command

The RCtime command measures the time that it takes for the capacitor to charge up from zero to the 1.3
volt threshold. The program makes pin 10 low to start off, and that discharges capacitor to zero volts. The
RCtime command then turns P10 into an input, and immediately starts looking for the voltage at the I/O pin
to cross the 1.3 volt threshold, while at the same time it counts up the elapsed time. The RCtime command
counts up in two microsecond intervals. If the voltage at the pin does cross the 1.3 volt threshold, then the
RCtime command wraps up and puts the elapsed time into the variable rct, and the program continues with
the instruction after the RCtime. Here that is a low 10, which discharges the capacitor back to zero. If the
voltage at the pin does not cross the 1.3 volt threshold within a tenth of a second (0.13107 second, to be
exact), the RCtime command gives up. It puts zero into the variable rct (to indicate overflow) and then the
program continues with the next instruction after the RCtime.

RCtime counts in units of 2 microseconds, and the maximum value of the count is 65535 (The maximum value
that will fit in a sixteen bit word.), so it follows that the maximum time is 131,070 microseconds (2*
65535)=0.13107 second. See the BASIC Stamp manual pg. 298 for more information about RCtime. To
reiterate, if nothing happens within 0.13107 second, the RCtime puts zero in the variable rct, to indicate an
overflow condition.

Experiment #3: Temperature Probe for Micro-Environments

Page 56 • Earth Measurements Student Guide Version 1.2

The RCtime command is useful for measuring many different things. Electrically, the circuit can be arranged
that the time depends on resistance, capacitance, voltage or current. Many transducers output one of those
electrical quantities. For example, the temperature sensor coming up is a transducer that transduces
temperature into an electrical current. A simple formula will allow us to convert the value returned by
rctime immediately into temperature. Another type of temperature sensor that is well suited for use with
the rctime command is the thermistor. It has a resistance that varies with temperature. It is not so
convenient, because it harder to calibrate.

Finally an explanation of the ASCII art bar graph in Program 3.2. This is a continuing education into the
capabilities of the debug command. Before the advent of computer graphic displays and printers, these ASCII
graphs were the only way to produce a graphical output!

 n=(rct-1)/2048+1 ' calculate length of bar graph
 debug rep "*"\n,cr ' display ascii art bar graph

When rct has a value between 0 and 65535, the value computed for n will be between 1 and 32. Note that
65535/2048=31. That defines the maximum value, and lower values fall into place. We scale it to 32 maximum
simply so that the graph will fit on the width of the STAMP2.EXE debug screen. Subtracting 1 from rct is a
refinement. Recall that the RCtime command only waits around for 0.13107 second, and then returns rct=0
to show that the time was longer than that. If we just graph that, then the longest, overflow, times end up
having the shortest length on the graph. By subtracting 1, rct=0 becomes (rct-1)=65535. (That is how
unsigned binary 16 bit math works--zero minus one equals 65535). The graph makes more sense that way.
The debug command then uses the "rep" modifier to print n stars on the screen, followed by a line return.
See the BASIC Stamp Manual Version 1.9, page 256 for more information about the rep modifier of the debug
command.

Experiment #3: Temperature Probe for Micro-Environments

Earth Measurements Student Guide Version 1.2 • Page 57

Temperature Sensor Probe Using the AD592 and RCtime

Now, remove the capacitor and conductivity sensor shown in Figure 3.4, and build the circuit shown in Figure
3.8. A schematic of the revised circuit is shown in Figure 3.9.

Figure 3.8: AD592 Temperature Sensor and RCTime
AD592 temperature sensor probe. The AD592 is mounted and insulated with heat-shrink tubing on the
end of a 16" pair of wires. Please see Appendix B for construction details if you are making your own.
• AD592 probe red wire (+) to hole next to the pushbutton, node A.
• AD592 probe black wire (-) to the row one up from the red (+) wire, node B.
• other end of node A, wired to Vdd (+5 volts) node next to the piezo.
• other end of node B, wired through 100Ω resistor to P5.
• 0.22 uF monolithic capacitor (marked 224) from node B to 2nd row up, node C
• reroute Vss wire from switch (-) to node C, and a new wire from node C to Vss (0 volts).

Experiment #3: Temperature Probe for Micro-Environments

Page 58 • Earth Measurements Student Guide Version 1.2

Figure 3.9: AD592 Temperature Sensor and RCTime Schematic

Experiment #3: Temperature Probe for Micro-Environments

Earth Measurements Student Guide Version 1.2 • Page 59

Then try the following program:

 ' Earth Measurements program 3.3
 ' Reading the AD592 temperature sensor using the RCtime command.
 Kal con 15300 ' constant to be determined
 rct var word ' a word variable
 TK var word ' Kelvin temperature
 TC var word ' degrees Celsius
 loop:
 low 5 ' discharge the capacitor
 RCtime 5,0,rct ' time for the volts to rise to 1.3
 TK = Kal/rct*10 + (Kal//rct*10/rct) ' calculate Kelvin
 TC = TK-273 ' and Celsius
 debug dec rct,tab,dec TK,tab,sdec TC,CR ' show the results
 goto loop

The display on the debug screen should show three columns, the raw time count (in units of two
microseconds) from RCtime, and the calculated Kelvin and Celsius temperatures. Heat up the temperature
probe in your hand or by some other means and verify that the rct reading on the debug screen goes down
as the temperature goes up. The TK and TC readings should go up with temperature, but do not pay attention
to the exact values yet. You still need to "calibrate" the sensor.

Note: This form of the debug command separates the decimal values of the variables with "tab" characters to
put them in columns. The "sdec" modifier allows for the display of negative numbers.

A word about what sort of device the AD592 transducer is, electrically. It is a current source. The equation
that governs its behavior is exceedingly simple:

Output = 1 microamp / Kelvin

That is, at 273 Kelvin (freezing, 0° C) , it produces 273 microamps. At 373 Kelvin (boiling, 100° C), it produces
373 microamps. At absolute zero it would produce zero microamps, although that is actually outside its
operational limit of -40 degrees Celsius.

If you look at the AD592 in terms of the analogy with a water tank, it is like a flow regulator on the input pipe.
The flow does not depend on the level in the tank, nor does it depend on the pressure (voltage) that supplies
the current on the other side of the regulator. This is very different from a resistor or wet fingers, where the
current depends on several factors. The name "RCtime" comes from R for resistance, C for capacitance, and
the time it takes for a resistor to charge the capacitor. A current source is a very special kind of regulated
resistor, one that makes the calculations relatively easy, lucky for us!

Experiment #3: Temperature Probe for Micro-Environments

Page 60 • Earth Measurements Student Guide Version 1.2

AD592 Calibration

The formula that relates the temperature to the time measured by RCtime is a reciprocal: in this case TK is
Kelvin temperature.

 rct = constant/TK or TK = constant/rct

See the box for the theory regarding the rate of change of voltage on a capacitor. The constant will be
around 153000 when the capacitor is 0.22 uF. But it will not be exactly that value due to variations in the
component values. That is why it needs to be calibrated.

In order to calibrate the sensor, we need to find the
constant for this particular setup. To do this, the
AD592 sensor must be put in a location where you know
the temperature exactly. A good choice is an ice bath
at 0° C, 273 K. With an ice bath reference, TK=273, the
constant will be (rearranging the previous equation):

 constant = 273 * rct

We have to put the probe into an ice bath, let it
stabilize, read the value of rct, and multiply to find the
constant.

Now try it yourself. Put your AD592 probe in an ice
bath, and run the program so that you see the RCtime
readings on the debug screen. Wait for the reading to
equilibrate (become steady).

 reading rct?__________

Take that number and multiply it times 273. This is your
calibration constant.

 constant =__________

Be aware that this constant is specific for this sensor,
this BASIC Stamp, and this capacitor. Now round off the

Theory governing the rate of change of
voltage on the capacitor:

The equation governing the rate of change of voltage on
the capacitor is

dV/dt = I/C

where I is the current and C is the capacitance. If you
know calculus, and assume that I and C are constant, you
can easily solve for elapsed time in terms of the change in
voltage and the capacitance and the current:

t = C * V / I

where t is in seconds, C is in Farads, V is in volts, and I is in
amps. If we substitute TK in Kelvin for microamps, 0.22µf
for C, 1.3 for the voltage, and 2*rct for the time in
microseconds, and taking care for the units, we come up
with the formula in the text:

rct = constant / TK

The constant is 153000, when those ideal values are
plugged into the formula. In reality, the capacitor will not
be exactly 0.22uF, the threshold will not be exactly 1.3
volts, and the AD592 will not have an output of exactly 1
microamp per Kelvin. Nevertheless, since there is only
one free constant, we will need just one point of
calibration.

Experiment #3: Temperature Probe for Micro-Environments

Earth Measurements Student Guide Version 1.2 • Page 61

constant to the nearest 10, and drop the final digit (a zero). This should be a five-digit number. This will be the
value of Kal you need to substitute in the program.

 Kal = __________

Put this value in your program 3.3 in place of the 15300 "default" value. When you rerun the program, you
should see TK and TC show the temperature of the calibration bath--273 Kelvin, 0 Celsius.

Now, to explain the peculiar formula needed to calculate TK. Unlike
big computers, where the computer language has lots of fancy
math available, you will need to stretch the BASIC Stamp's limited
math brain. The reason we need the trick is that the constant,
~153000 (or whatever you found) is larger than the highest possible
number that the BASIC Stamp can work with (216=65536).

Recall how you did long division in elementary school. This is the
same thing, really, but the notation is a little different. Here are
examples of the two essential elements in BASIC Stamp math:

BASIC Stamp
Notation:

. . meaning

1432/524 = 2 Single slash means INTEGER DIVISION (524
goes twice into 1432) and there is a
remainder.

1432//524=384 Double slash means remainder after
INTEGER DIVISION: 1432-(2*524)=384.
Remainder always less than divisor,
384<524.

Observe that 2*524+384=1432, that is, the quotient times the
divisor, plus the remainder is equal to the original number. That is
really the definition of division.

Ice bath, calibration standard:

The melting point of ice made with pure
water is a physical constant. Zero degrees
Celsius, 32 degrees Fahrenheit, 273 Kelvin
(Or 273.14 if you want to push the
precision). You can get the best results if
the ice and water mixture is:

 (1) made with crushed ice made from

distilled water;
 (2) is held in a vacuum thermos bottle

with a narrow mouth;
 (3) stirred gently while making the

measurement; and
 (4) at least 5 cm of wire is submersed

above the sensor probe tip.

Lacking a thermos bottle, you can substitute
a well-insulated foam container. Careful
preparation is very important if you want
to achieve good results in the calibration!
Watch until the reading settles down to a
steady value, to equilibrium.

Metrologists (not meteorologists!) are
scientists who advance the science of
accurate measurements. They have to think
about all possible factors that could
influence the measurements.

Experiment #3: Temperature Probe for Micro-Environments

Page 62 • Earth Measurements Student Guide Version 1.2

Now, think how you would solve the problem of 143220/524, using elementary school arithmetic:

Equation: Steps in elementary school arithmetic:

524

27

143220
14148
 174

First step in a long division. 524 goes 27
times into 14322, and the remainder is 174.
The BS2 knows how to divide into numbers
that have numerators less than 65536, so it
has no trouble in figuring out that
14322/524=27 in one step.

524

273

143220
14148
 1740
 1572
 168

Next step, the zero is brought down to the
right of the 174 remainder. That effectively
multiplies the 174 times 10. Then 1740 is
divided by 524, and the result, 3 is put after
the quotient, which becomes 273. This too
effectively multiplies the 27 times 10, as it
moves up by one significant figure. The
fractional remainder, 168/524, is dropped.

Here is how the BASIC Stamp II denotes the same problem:

 TK = 14322/524*10 + (14322//524*10/524)
 '^^^^^^^^^^^^----------------- first step of division, times 10-> 270
 '^^^^^^^^^^^^^ the remainder times ten= 1740
 ^^^division to get next quotient digit=3
 '^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^bottom line quotient is 273
 final remainder 168 is dropped

The result is that the BASIC Stamp has calculated 143220/524=273.

If you like math, great, you understand or can figure out how it works. If you are one of those who draws a
blank when you see math, or you don't have the time to sit down and think it trough, well, just take the
formula, use it, and turn the crank. A lot of math in computer science is like that. It comes in libraries you just
use without thought when you write programs. You assume that the wizards in the tower have gotten it right.
Nonetheless, understanding it can be helpful and rewarding, or a career, if you are good at it.

What is the smallest change in temperature that we can detect? Look at some typical rct values and TK
values, if the constant is 143000.

Experiment #3: Temperature Probe for Micro-Environments

Earth Measurements Student Guide Version 1.2 • Page 63

 Raw conversion: real Kelvin Celsius

143000/484 =295.5 295 22
143000/485 =294.8 294 21
143000/486 =294.2 294 21
143000/487 =293.6 293 20
143000/488 =293.0 293 20
143000/488 =292.4 292 19

The real resolution is about 0.6 Kelvin. That is, each step in rct is at best a step of 0.6 Kelvin in temperature.
We are rounding it off to 1 Kelvin. (Losing a little information.)

If we were to use a larger capacitor (say 0.33µF) in the circuit, the constant would be larger, and the
resolution would be improved. On the other hand, with a smaller capacitor (like 0.1µF), the resolution would
be worse.

In the next experiment, you will check on the calibration of the AD592 probe in comparison with the DS1620
from Experiments #1 and #2.

Resolution:

Suppose you are measuring a quantity
that can take on any value between
zero and 100. If your instrument can
only tell the difference between
"greater than 50" and "less than 50",
then it has one bit of resolution, that
is, the measurement is a sort of
"yes/no". On the other hand, if your
instrument can tell the difference
between 1 and 2 and 3 and so on up
to 100, then the resolution is 1%, or
about 7 bits (7 bits, because 2^7=128).
Resolution is not the same thing as
accuracy. If your instrument reads 50
when the true value is 52.3, then it is
not accurate, or at least it needs to be
calibrated. That is true whether it has
one bit or 7 bits or more of
resolution.

Experiment #3: Temperature Probe for Micro-Environments

Page 64 • Earth Measurements Student Guide Version 1.2

Talking Thermometer Revisited, Two Channels

Now let's combine this new sensor with the DS1620 talking thermometer. Load in program 2.10, saved from
Experiment #2, and add the lines shown below with the ❒ symbol. In place of the Kal value shown here, use
the one that you calculated above. See how the program is building up. You are simply adding the new
variables and the new PBASIC routine for the AD592 to the existing program. Position the AD592 probe in
contact with the DS1620 on the Board of Education while you type this in. The first thing you are going to test
is to see if the AD592 probe and the DS1620 have the same reading at "room temperature", so you will want
them to be at the same temperature.

 ' Earth Measurements program 3.4
 ' talking thermometer, two channels.
 dit con 70 ' milliseconds for Morse dit
 dit2 con 2*dit ' constants related to dit
 dah con 3*dit ' ditto
 mc var byte ' temporary for Morse pattern
 xm var byte ' morse input variable
 j var nib ' index for digits to send
 i var nib ' index for dits and dahs
 x var byte ' define a general purpose variable, byte
 degC var byte ' define a variable to hold degrees Celsius
 ' note: DS1520 preprogrammed for mode 2.
 ' high 13:shiftout 15,14,[12,2]:low 13
 Kal con 15300 ' ❒ USE YOUR OWN calibration constant
 TK var word ' ❒ for Kelvin temperature from AD592
 TC var word ' ❒ Celsius of AD592
 rct var word ' ❒ for the RC timer.

 outs=%0000000000000000 ' define the initial state of all pins
 'fedcba9876543210
 dirs=%1111111111111101 ' as low outputs
 ' except P1, an input for a pushbutton
 freqout 0,20,3800 ' beep to signal that it is running
 high 13 ' select the DS1620
 shiftout 15,14,lsbfirst,[238] ' send the "start conversion" command
 low 13 ' finish the command
 clik: ' loop here while the button is up
 if in1=1 then clik ' decide if the button is up(1) or down(0)
 clik1: ' loop here while the button is down
 if in1=0 then clik1 ' decide if the button is down(0) or up(1)

 DS1620: ' ❒ label for DS1620 temperature sensor code
 high 13 ' select the DS1620

Experiment #3: Temperature Probe for Micro-Environments

Earth Measurements Student Guide Version 1.2 • Page 65

 shiftout 15,14,lsbfirst,[170] ' send the "get data" command
 shiftin 15,14,lsbpre,[x] ' get the data
 low 13 ' end the command
 degC=x/2 ' convert the data to degrees C
 debug ? degC ' show the temperature on the debug screen
 xm=degC ' morse routine expects data in variable, mx
 gosub morse ' to the subroutine
 pause 100

 AD592: ' ❒ label for AD592 temperature sensor code
 rctime 5,0,rct ' ❒ get the AD592 count
 low 5 ' ❒ pull input low, discharge cap
 TK = Kal/rct*10 + (Kal//rct*10/rct)
 ' ❒ calculate Kelvin
 TC = TK-273 ' ❒ and convert to degrees C
 debug ? TC ' ❒ show the result (if hooked to the PC)
 xm=TC ' ❒ morse routine expects data in variable, xm
 pause 500 ' ❒ delay to separate the readings
 gosub morse ' ❒ to the subroutine

 goto clik ' back to wait for button again

 morse: ' enter here to send byte xm as morse code
 for j=1 to 0 ' send 2 digits, tens then ones.
 mc = xm dig j ' pick off the (j+1)th digit
 mc = %11110000011111 >> mc ' set up pattern for morse code
 for i=4 to 0 ' 5 dits and dahs
 freqout 0,dit2*mc.bit0(i)+dit,1900 ' send pattern from bits of mc
 pause dit ' short silence
 next ' next i,dit or dah of five
 pause dah ' interdigit silence
 next ' next j,digit of two
 return ' back to main
 end

If the Morse code becomes obnoxious to you or your classmates, simply unplug the wire from P1 to turn off
the buzzer, or put an apostrophe in front of the gosub morse and turn it into a comment.

Experiment #3: Temperature Probe for Micro-Environments

Page 66 • Earth Measurements Student Guide Version 1.2

Run this with the AD592 probe in direct contact with the DS1620 on the Board of Education (and no direct
sunlight). If you have some, you can put some heat sink compound (thermally conductive grease) between the
two to improve the contact. Be sure the readings are constant, and record the readings in degrees Celsius:

 DS1620 :__________
 AD592 :__________

They should be pretty close to one another. You just calibrated the AD592 in an ice bath, and the DS1620 data
sheet specifies that its reading will be within ±0.5 degree.

Save this new version of the program on disk, following your teacher's instructions.

Automatic Calibration (Advanced Topic)

One feature of many modern instruments is automatic calibration. For example, since we know that the
DS1620 has 0.5 degree accuracy, we might like to skip the preparation of an ice bath, which, after all, requires
quite a few materials and effort to do it right. We can use the DS1620, at room temperature, as the
calibration reference. You could attach a new AD592 temperature probe to the Board of Education, put it in
contact with the DS1620, and let it sit for a few minutes, and then press a button to enter the calibration
value. Viola! The BASIC stamp calculates the correct calibration value and stores it in EEPROM for you. Here is
a program to do that. The program also instructs how to store and retrieve word-size data in the EEPROM.

In program 3.4, the calibration constant was entered as

 Kal con 15300 ' USE YOUR OWN calibration constant

but now you need to replace that with:

 eKal data word 15300 ' ❒ constant to be determined, automated
 Kal var word ' ❒ for calibration constant

The value eKal points to a value in the EEPROM, and that value will be transferred to and from the variable
Kal, using the BASIC Stamp's read and write statements.

The calibration constant is a word value, but the EEPROM stores only bytes. The trick is to store the word in
two successive bytes of EEPROM. Enter the following two lines in the program just before the RCtime
instruction.

Experiment #3: Temperature Probe for Micro-Environments

Earth Measurements Student Guide Version 1.2 • Page 67

 read eKal, Kal.byte0 ' ❒ get calibration constant low byte
 read eKal+1, Kal.byte1 ' ❒ get calibration constant high byte
 ^^^^^^-------------- ' read from location eKal, then from e=Kal+1
 ^^^^^^^^^--- ' byte0, then byte1, of word variable Kal

The Kal.byte0 is a modified form of the variable Kal that means, "byte 0 of word Kal". This is like the
modifiers that you saw in the Morse code routine in Experiment #2.

Also modify the clik1 routine so that if you hold the button down for a long time, it will branch to a special
calibration routine. Recall the longclik routine from Experiment #2?

 x=0 ' ❒ add this line to zero the counter
 clik1:
 pause 100 ' ❒ 0.1 second pacing
 x=x+1 ' ❒ add this line to count up x
 if x>30 then calibrate ' ❒ calibrate if button held > 3 seconds
 if in1=0 then clik1 ' loop until buttonUp

Finally, add the following subroutine at the end of the program:

 calibrate:
 freqout 0,5,3400 ' ❒ signal to show we got here
 debug "The probe should be in contact",CR
 debug " with the DS1620",CR
 TK=degC+273 ' Kelvin temperature of DS1620
 Kal = TK/10*rct + (TK//10*rct+5/10) ' ❒ compute and round off Kal
 debug ? Kal ' ❒ show value of Kal
 write eKal,Kal.byte0 ' ❒ write the low byte of Kal
 write eKal+1,Kal.byte1 ' ❒ write the high byte of Kal
 freqout 0,5,1900 ' ❒ show finished
 goto clik ' ❒ back to the top

Try it out. When you first run the program, the temperatures returned from the AD592 will be incorrect, due
to incorrect default value of eKal. Put the AD592 in contact with the DS1620. IMPORTANT: make good contact
between the AD592 and the DS1620, using a wire to hold them together, and improve the contact with
silicone heat sink grease if you have some. Be sure there are no nearby sources of heat.

Click the button and watch the reading until you see that it has settled down. When ready, press and hold the
button until you hear the calibration click. When you release the button, the readings should suddenly become
correct in comparison to the DS1620. The AD592 probe can now be extended out to measure other

Experiment #3: Temperature Probe for Micro-Environments

Page 68 • Earth Measurements Student Guide Version 1.2

temperatures. This kind of auto-calibration capability is especially important for instruments that read things
like conductivity or pH (acidity), where the sensors need frequent recalibration.

Place your AD592 probe in the ice bath. It should read close to zero, within the ±1 degree resolution of the
Board of Education measurement system. Remember, the calibration routine depends on having the AD592 at
the same temperature as the DS1620! With this auto-calibration routine, do not press the calibration button
when the probe is in the ice bath!

The calibration constant comes from the equation:

 constant = (true Kelvin temperature) * rct

We are assuming that the DS1620 gives us the "true" temperature. Suppose the DS1620 is at 25 degrees
Celsius, 298 Kelvin. Suppose the value of rct is 591. So,

 constant = (298 * 591) = 176134,

. . .and the value that must go into the EEPROM is the top five digits of that, rounded off as before. The trick is
to get this result on the BASIC Stamp without overflowing 16 bits. It takes two steps, rewriting the reference
temperature as. . .

 298 = 29 * 10 + 8

or in the notation of the BS2, for any Kelvin temperature:

 TK = (TK/10)*10 + (TK//10) ' integer division, plus remainder.

Multiplying both sides by rct, then dividing by ten (to get the top 5 digits of the product), we end up with the
formula in the program:

 Kal = TK/10*rct + (TK//10*rct+5/10) ' ❒ compute and round off Kal

The 5 added before the final division is for rounding. Think it through.

The two write statements store the byte 0 of word Kal in the location, eKal, and then byte1 of word Kal in
the location right after that. There again are the .byte0 and .byte1 modifiers of the word variable, Kal.
Subsequently, the read command retrieves the calibration value in exactly the same order. The calibration
constant stays there unchanged in EEPROM until (1) you press the calibration button again, or (2) until you
reload (RUN) the program again from the STAMP2.EXE on the PC.

Experiment #3: Temperature Probe for Micro-Environments

Earth Measurements Student Guide Version 1.2 • Page 69

Some Earth Measurements Temperature Experiments

Investigate the temperatures you find around and about your environment. Your instructor may have specific
instructions. Look at hot and cold tap water, an aquarium, out in the open sun, under trees, underground.
Note that it is possible to extend the length of the temperature probe, if you want, simply by adding more
wire. Look for those microenvironments? Where are the sources of heat that lead to variation in
temperatures in microenvironments?

Here are a few specific experiments you can try. These merely illustrate how a temperature probe can be
used to measure more than just temperature.

1) Measure the air temperature in the shade.

 Dry bulb temperature:__________

Then wrap wicking, gauze or cloth or a piece of paper towel around the temperature sensor and hold it
in place with rubber bands or wire. Try to make the wrapping tight and compact, not too much of it!
Make the cloth wet. Observe the temperature as you fan air across the wet sensor, or as you spin the
probe rapidly around on its wire. It will cool down to its final value quicker if you have constructed a
compact wet bulb. What is the new final temperature?

 Wet bulb temperature:__________

You might expect 4 or 5 degrees Celsius of wet bulb depression in a room at 50% relative humidity.
Everyone knows that a wet body cools off in the breeze. The cooling effect is greatest in dry air. This is
called the wet bulb depression. It depends mainly on the relative humidity in the air, and on windspeed.
At higher windspeeds it depends only on relative humidity. An instrument to measure humidity using a
wet and a dry thermometer is called a "psychrometer" (drom Greek root, psychros, cold). By spinning
the wet bulb through the air, it becomes a "sling psychrometer". Psychrometric charts are where you
would go to look up the humidity as a function of the dry and wet bulb temperatures. Try this both inside
and out of doors. For interest, an example of a psychrometric chart is shown in Figure 3.9.

Experiment #3: Temperature Probe for Micro-Environments

Page 70 • Earth Measurements Student Guide Version 1.2

2) Ice point depression in salt water.

 You have an ice bath from your calibration of the temperature probe. When ordinary table salt is mixed

with ice water, what happens to the temperature of the mixture? Think about the role of salt water in
relation to ice cream makers, icy roads and icebergs. You might do some quantitative experiments with
the amount of salt, or with different types of salt. Do the experiments in a well-insulated container to get
the best results!

3) Solar radiation intensity from black and white thermometers.

 Wrap a cylinder of aluminum foil around the temperature sensor, twisted at the end, and tie a thread to

the foil so that you can pull it put it off the probe. Put it in the sun inside a clear plastic or glass jug (to cut
down the wind). Record the reading when it settles down

Figure 3.9: Example of Psychrometric Chart
• "y" axis on the right side is relative humidity.
• "x" axis is dry-bulb temperature (C)
This chart was designed by Hong Kong University in order to classify building comfort zones.

Experiment #3: Temperature Probe for Micro-Environments

Earth Measurements Student Guide Version 1.2 • Page 71

 reading with foil wrap:_________

 Use the thread to pull off the foil. Compare the reading with and without the foil.

 reading with black sensor :_________

 Everyone knows that dark objects can get hot in the sun. A device that measures radiation by looking at

the temperature difference between a black and a white surface is called a "black and white"
pyranometer. (Pyr is a Greek root that means "fire", but you already knew that!).

4) Windspeed from hot probe anemometer.

 Allow the black temperature sensor to become hot in the sun. Then fan air across it or spin the probe

around on the end of its wire. Everyone knows that warm bodies cool off in the breeze. This shows that
temperature can be used to measure winds speed. "Hot wire anemometers" use a platinum wire both as
the sensing element (its resistance changes with temperature) and as the heating element (electrical
current passing through it makes it heat up).

 change in reading:__________

Experiment #3: Temperature Probe for Micro-Environments

Page 72 • Earth Measurements Student Guide Version 1.2

Challenge!

1) Hook up a circuit as in Figure 3.3 (or 3.4), except use 100K resistor and a 0.22 uF capacitor. Measure the
rct value, and insert it in the center cell of the table below. You have two 0.22 uF capacitors in your kit,
and two 100K resistors. By making parallel and series connections of those parts, you can fill in the rest
of the entries in the chart.

Rctime vs. R and C 50KΩ 100KΩ 200KΩ

0.11µF
0.22µF

0.44µF

2) Modify program 3.3 so that it shows its result in degrees Fahrenheit and degrees Rankine, instead of

degrees Celsius and Kelvin. (Rankine=Kelvin*1.8.). Do not just convert Kelvin to degrees Rankine though.
Calculate a new constant for Rankine=constant/rct.

3) Sometimes the Morse code sound may be annoying. You can unplug the wire from P0 to shut it off. But

the challenge here is to make a way to turn it off in software. Think of a way using the pushbutton to
toggle the sound on and off.

4) Hook up a 0.1 µF capacitor and 100 ohm resistor to P10, as in Figure 3.4, with the conductivity probe.

Also hook up an LED and resistor to P8, so that the BASIC Stamp can turn the led on and off. Then (a)
make a program that turns on the led only when the probe is dipped in water; (b) Make a program that
pauses for 10 seconds, then tests the input and blinks the led if the probe was dipped in water anytime
during the 10 second pause. Then recharge the capacitor, turn the pin to an input, then go back to the
pause; and (c) Modify the program so that it counts up how many times you dip the probe in water, one
count possible for each pause. This program shows how the capacitor helps to monitor things like rain
gages and traffic counters--switches that close unpredictably for short periods of time. The capacitor is
used as a "memory", remembering the event until the BASIC Stamp gets around to looking at the input.

Experiment #3: Temperature Probe for Micro-Environments

Earth Measurements Student Guide Version 1.2 • Page 73

Vocabulary

micro-environment

analog vs digital

analog as analogy

transducer sensor probe

sourcing current

sinking current
capacitor voltage level

threshold

rate of charging

RCtime

branch

calibration bath

ice bath

273.14 Kelvin

debug rep "*"\n

integer division, remainder

accuracy, resolution

automatic calibration

wet bulb, dry bulb

psychrometer

Experiment #3: Temperature Probe for Micro-Environments

Page 74 • Earth Measurements Student Guide Version 1.2

Experiment #4: Light on Earth and Data Logging

Earth Measurements Student Guide Version 1.2 • Page 75

Experiment #4:
Light on Earth and
Data Logging

The theme of the Light on Earth and Data Logging experiment
is "light, and it's importance for everything under the sun". To
demonstrate this, we'll build a light meter/data logger. The
activities we'll perform in this experiment consist of: (1) Light
sensor photodiode using Rctime, and observations of the
orders of magnitude scales of intensity; (2) Combined

temperature and light meter; (3) A pushbutton data logger for temperature and light; and (4) A couple of
experiments using the meter/logger.

"Let there be light"

If temperature is the number one variable in earth measurements, then light would have to be number zero.
The sun is the driving force of most of the weather and physical processes on earth. Where would we be
without photosynthesis? People have been taking measure of the sun since the dawn of prehistory. At
Stonehenge, at the Caracol of Chichen Itza, and around the world, the ancients took the measure of the solar
cycle of the seasons in relation to agriculture and temporal and spiritual life.

Temperature is a relatively simple variable in comparison to light. Light comes in a spectrum of colors, both
visible and invisible, and the spectrum extends out to fuzzy limits of wavelength. It has polarization and
direction. Many aspects of light have special significance. Certain wavelengths are responsible for sunburn;
other wavelengths are special for the ripening of fruit. There are subtle patterns of light. For example, bees
can see patterns of deep blue on flowers that the human eye cannot perceive, and hummingbirds vision
extends farther into the red than our own. Light is important to us in a tremendous range of intensities, from
solar energy for electricity and heating, to bioluminescence of creatures in the deep oceans.

Like temperature, light is often used to measure other things. For example, instruments for detecting air
quality and CO2 are often based on lasers or on the fact that gases absorb light at characteristic wavelengths.
Astronomers use the spectra to deduce the chemical composition of the stars and interstellar gasses. On the
other end of the scale of size, light is used to probe chemical processes in the DNA and mechanisms of the
living cell. In a practical arena, light is used for motion detectors, for indicators, and of course for illumination,
which is itself a whole specialty of engineering.

One fundamental law is that the light from a point source falls off with the square of the distance. That is, at
double the distance from a light bulb (or from the sun), the light intensity will be 1/4 of its value at the first
location. The same amount of energy is spread over 1/4 of the area. Using the light meter you build in this
lesson, you will have a tool to investigate that law, as well as to explore light variation in your environment.
This concept is shown in Figure 4.1.

Experiment #4: Light on Earth and Data Logging

Page 76 • Earth Measurements Student Guide Version 1.2

Parts
Required

 For this experiment we'll be leaving parts on the Board of
Education that we installed in Experiment #3. The following
parts are required for Experiment #4:

(1) photodiode (Photonic Detectors' C113 or V113)
(4) 100 ohm resistor (brown black brown)
(2) 0.01 uF film capacitor (103)
(1) 0.22 uF film capacitor (224)
(2) 100 pF ceramic capacitor (101)
(1) red led
(1) green led
(1) 9 volt battery
(1) 50 watt R20 spotlight (for experiments)

Figure 4.1: Light Attenuation
At twice the distance from a bulb (or from the sun), the light intensity will be
1/4 of its value at the first location. We'll investigate this law with our
microcontroller-based light meter.

Experiment #4: Light on Earth and Data Logging

Earth Measurements Student Guide Version 1.2 • Page 77

Build it!

Photodiode as a Light Transducer

In "What's a Microcontroller" you used a photoresistor (also called a photoconductive cell) to detect imaginary
people approaching a supermarket door, where a servo motor opens the door automatically to let them in. A
wildlife photographer or biologist might use a similar arrangement to detect an elusive animal, to trigger the
shutter of a camera. In this lesson, we will use a different type of photodetector, a photodiode. A photodiode
passes an electrical current (in amps) that is directly proportional to light intensity. This characteristic makes
it especially well suited for quantitative measurements.

You are familiar with a light emitting diode, which turns electrical current into light. The led emits light when
the current flows in the direction of the diode arrow. You may know that electrons (negative charges, e-)
actually flow in the opposite direction. But in an accident of historical interpretation, in electronics we usually
think of current as if it were carried by positive charges. Again, the LED emits light when the (positive) current
flows in the direction of the arrow.

It also works in reverse. Light falling on a diode produces electricity. If you connect a voltmeter to a diode
exposed to light, you will measure a fraction of a volt, with the polarity as indicated. Electrons accumulate at
the cathode end.

Figure 4.2: LED
The LED emits light when the (positive) current
flows in the direction of the arrow.

Figure 4.3: Photodiode
A photodiode produces electricity with light.

Experiment #4: Light on Earth and Data Logging

Page 78 • Earth Measurements Student Guide Version 1.2

When you connect the diode into a circuit loop with a wire, then current flows around the loop. The amount
of current is proportional to the intensity of the light. This is fundamental. It is the light that generates the
charges that make the current. The only way they can get back together is to flow around the external circuit.
Observe that the electrons flow clockwise around the circuit. The conventional current (positive charges)
flows in the opposite direction, against the direction of the diode arrow. This is called a photocurrent, and it is
a reverse current. Compare this to the forward current that lights up an LED. This business of the arrow can
be confusing, but in electricity, it is all relative. In this circuit, the voltage across the diode is zero--it is short-
circuited.

Sensitivity to light is a fundamental property of transistors and diodes. In most places, that would be an
undesirable side effect. Transistors and integrated circuits are usually potted in a plastic, ceramic or metal
case, and one reason to do that is to keep out light that would greatly affect their performance. Photodiodes
are made especially to accentuate the sensitivity to light. Look at the C113 photodiode in your kit. It has a
clear epoxy top, and underneath that you can see a small black square of silicon, with wires attached at the
sides. Electrical charge builds up on the top and the bottom, where the wires pick it up. The difference
between a solar panel and a photodiode is largely in the area of the diode. Solar panels have huge areas,
square feet or square meters, so they can intercept a lot of light and produce lots of current and power,
measured in amps and watts. The photodiode is made of especially pure material for measurement, not for
energy production.

One thing that makes photodiodes very useful for measurement is that a simple equation governs their
behavior as a transducer:

i = constant * (light intensity)

Figure 4.4: Photocurrent
Photocurrent occurs when conventional current
(the positive charges) flow in the opposite
direction, against the direction of the diode arrow.

Experiment #4: Light on Earth and Data Logging

Earth Measurements Student Guide Version 1.2 • Page 79

The sensor is linear. That means that if the light level increases, say, by a factor of 1000, then the current
through the diode will also increase by that same factor. For the photodiode, this holds true over several
orders of magnitude, over several powers of ten. It is that characteristic that makes it so useful for
measurement.

The simple equation also holds true when the diode is hooked up in a reverse voltage circuit as in Figure 4.5.
At the same light intensity, the amount of current is exactly the same here as it would be in the short circuit
of Figure 4.4. The current through the photodiode charges the capacitor. The charge accumulates on the
capacitor as shown, and the voltage across the capacitor gradually increases. The BASIC Stamp II program will
measure the time it takes for the voltage at P6 to fall from 5 V down to 1.3 V as shown in Figure 4.5.

Figure 4.5: Photodiode Circuit
With this circuit the BASIC Stamp can measure the
time it takes for the charge to fall from 5 V to 1.3
V. This is called a resistor/capacitor circuit.

Experiment #4: Light on Earth and Data Logging

Page 80 • Earth Measurements Student Guide Version 1.2

So let's built it! The pictorial is shown in Figure 4.6, and schematic is in Figure 4.7.

Figure 4.6 Photodiode Light Transducer

• 0.01 uF film capacitor (marked 103)

from Vdd node (same one as AD592 red
wire) to node A.

• Photodiode anode (with red dot) to Vss
node.

• Photodiode cathode to node A.
• 100 ohm resistor from node A to P6

• Optional: if you want to quiet down the

sound from the annunciator, replace
the wire from P0 to the annunciator
with a 100 ohm resistor.

Experiment #4: Light on Earth and Data Logging

Earth Measurements Student Guide Version 1.2 • Page 81

Figure 4.7: Photodiode Light
Transducer Schematic

An optional resistor may be installed
between the piezo transducer and BASIC
Stamp PO to quiet down the speaker.

Experiment #4: Light on Earth and Data Logging

Page 82 • Earth Measurements Student Guide Version 1.2

Enter the following program:

' Earth Measurements program 4.1
' Sound out light levels from the photodiode
rct var word ' variable for RCtime
high 6 ' discharge the capacitor
loop:
 RCtime 6,1,rct ' time for volts to fall to 1.3
 high 6 ' discharge the capacitor
 if rct=0 then loop ' no sound if RCtime overflows
 freqout 0,1,3400 ' make a click
goto loop

After you run the program on the BASIC Stamp, expose the light sensor to a

variety of light conditions, from dim light, to light bulbs, to sunlight if available. Read the next couple of
paragraphs before you get too far though.

Light levels can vary tremendously in the natural environment. Our eyes have an amazing capability to
accommodate to both dim and to bright light. Sensitivity is the amount of light that it takes to get a response.
Sometimes we need a sensitivity adjustment, or a switch for "high" and "low" sensitivity. Cameras and eyes
have an iris that opens or closes to adjust the amount of incoming light, to extend the range of sensitivity.

Observe that the program jumps back to the top without making a sound, if the value of rct is equal to zero.
That is at the dim end of the range. You may have to cover the sensor with a box or something to make it
dark enough to see this effect. The capacitor takes too long to charge and the RCtime command does not
see a transition from 1 to 0 at P6 within its 0.13107-second limit.

• To make it respond better in dim light (more sensitive), replace the 0.01f capacitor with 100 pf
(picofarads, marked 101).

At the other extreme, in bright light, the clicking becomes very high-pitched and bunched up, so you can't
distinguish differences.

• To make it respond better to bright light (less sensitive), substitute a 0.22f capacitor (marked 224), or
put a piece or two of tissue paper over the sensor, held it in place with a rubber band, in order to
decrease the sensitivity.

Now, run the Board of Education from a 9-volt battery and carry it around your environment. (Be sure the
battery is good-weak batteries can lead to puzzling results!) Carry along the 100pF and a 0.22 uF capacitor
and change the sensitivity whenever you feel it is necessary.

Node:
A node consists of all the
points in a circuit that are
connected together. Each
row of 5 holes on the Board
of Education is a node,
because all of the holes are
connected electrically. One
node in circuit 4.6 is the
point where the diode, the
capacitor and P6 meet.

Experiment #4: Light on Earth and Data Logging

Earth Measurements Student Guide Version 1.2 • Page 83

• Try pointing the sensor both up and down, to detect the direct light and the reflected light and
patterns of light and shade.

• Try scanning close across the objects on a desk, or close to the bold pattern on a curtain or clothing,

or the flickering pattern on your computer screen or TV set.

• Try scanning in a relatively dark place (using the 100pF capacitor), as well as outside in sunlight, if
available (using the 0.22 uF capacitor).

Have fun with this!

Experiment #4: Light on Earth and Data Logging

Page 84 • Earth Measurements Student Guide Version 1.2

Light intensity:

• A Pyranometer quantifies light intensity by the light energy hitting a surface per unit time. This is the right measurement if
you are designing a solar panel system or a solar water heater, or if you are an architectural engineer thinking about the
energy efficiency of a building. This kind of light intensity is measured in watts per square meter. The power input from the
sun at the earth's surface, on a clear summer day, is a little over 1000 watts per square meter, or 75 watts per square foot.
The solar energy input above the atmosphere is nearly 1400 watts per square meter, which is often given in other units as 2
Langley's per minute. (1 Langley=1 calorie per square centimeter). Sometimes we are interested only in the energy of
certain wavelengths. For example, ultraviolet light at about 300 to 320 nanometer causes sunburn, not only in people, but in
other life on earth too, like coral in the ocean. This UVB light can be separated out and measured. It amounts to less than
0.1% of the total, less than 1 watt per square meter. But it is a very significant 0.1%. More and more UVB is getting down to
the earth as the ozone in the upper atmosphere is depleted, due it seems to human activity, the use of certain CFC
chemicals.

• A Photometer quantifies light intensity is as our eyes see it. This is the subject of illumination engineering. And physiology.

How does an owl see? Our eyes are most sensitive to bright light in the yellow-green, and the sensitivity falls off in the red
and the blue. The question of light intensity is still one of energy per unit area per unit time, but now it includes only energy
at the wavelengths we can see. And it has special units, lux or footcandles. The light intensity looking at full sunlight is about
110,000 lux, but of course, looking at direct sunlight is not something that we do. It is too intense. In contrast, a 100 watt
light bulb, viewed from 1 meter distance, is about 100 lux. That too is perceived as bright. Normal room lighting is measured
in 10s of lux. There is a tremendous range of values that sensors, including our eyes, have to deal with. 7 or 8 orders of
magnitude. But that is nothing compared to the range of light levels arriving from celestial objects, which is detectable over
20 orders of magnitude.

• A PAR meter quantifies light intensity is as it effects the growth of plants. This is of great interest to farmers, and

aquaculturalists, and botanists. Photosynthesis occurs in special band of wavelengths, called the photosynthetic action
spectrum. PAR stands for Photosynthetically Active Radiation. Measurement of PAR allows botanists to estimate how much
growth would be possible for a plant, if light were the limiting factor. Light comes in packets of energy, called quanta, and
each unit of photosynthesis take one quanta of light. The units of PAR are micromoles of quanta per square meter per
second. Full sun illuminosity is about 2000 moles per square meter per second. A lot of plant biology has to with plant
adaptations to light levels.

• A Spectrophotometer is the most versatile of the bunch. It tells you how much light energy is in each narrow band of

wavelengths across the spectrum. In contrast, the photocurrent in your photodiode is due to the convolved effect of many
different wavelengths. The spectrophotometer can be used to characterize and calibrate almost any of the other light
measuring instruments, but, needless to say, it can be a much more complicated and expensive instrument. An economical
version of this is a colorimeter, that you might find in a paint store for matching colors.

Experiment #4: Light on Earth and Data Logging

Earth Measurements Student Guide Version 1.2 • Page 85

Let's talk more about the BASIC Stamp program. One side of the capacitor is connected to Vdd (+5) (instead
of to Vss, where it was in the AD592 temperature sensor circuit). Here, the program starts off with HIGH 6, to
discharge the capacitor. This might seem strange, to make the pin high to discharge the capacitor, but note
that a capacitor is said to be "discharged" when the voltage from one side to the other is equal to zero. The
top of the capacitor is connected to +5 volts, so HIGH 6 makes both sides equal to +5 volts, so it is
discharged. Figure 4.8 illustrates the time course of the voltage at P6.

Look carefully at the RCtime command in Program 4.1. The second parameter is now a 1. That parameter
was 0 in the programs in Experiment #3 with the AD592 temperature transducer. The 1 instructs the RCtime
routine to count time while P6 is equal to one, and to stop when P6 makes the transition to zero. Try changing
the second parameter from 1 to 0. It doesn't work, does it? That is, is it sensitive to light? Do you hear a very
high tone, a very low tone, or no tone at all? For debugging, it is good to think these "what if..." kinds of
questions.

The BASIC Stamp provides both forms of the command, with the second parameter either 0 or 1, because
there are situations where one or the other will be the best or the only choice. For example, the AD592
temperature sensor works fine in the circuit of Experiment #3, but it would fail to work in this circuit of
Experiment #4. That has to do with the voltage requirements of the AD592. We can't go into all the advantages
and disadvantages of one circuit over the other, but it is good to be aware of this flexibility when you get
down to the fun of designing your own serious projects.

Observe that the pitch of the tone from the annunciator goes higher in brighter light. How come, when the
time to discharge the capacitor, rct, goes lower in brighter light? Be sure you understand the reason, that
with lower values of rct, the program loop cycles faster, which makes a higher tone.

Figure 4.8: Resistor/Capacitor Discharge
Current sinking through the photodiode
gradually charges the capacitor down until the
voltage at P6 reaches the 1.3 volt threshold.
The RCtime command holds P6 as an input
during that time. As soon as the RCtime
detects the 1.3 volt level, the program moves
to the HIGH 6 and quickly discharges the
capacitor, and the voltage at P6 quickly
returns to +5 volts.

Experiment #4: Light on Earth and Data Logging

Page 86 • Earth Measurements Student Guide Version 1.2

Photodiode and the BASIC Stamp as a Digital Light Meter

The previous program was an analog meter, because the frequency output was an analog of the light input.
Both go up and down in a similar manner. Analog meters are great conveying information directly to our
senses. Let's look at the actual numbers on the debug screen. This is the digital connection. Modify the
program as follows (lines remarked with a ❒ are the ones you need to add or change):

' Earth Measurements program 4.2
' Numerical light levels from the photodiode
rct var word ' variable for RCtime
light var word ' ❒ variable light intensity
high 6 ' discharge the capacitor
loop:
 RCtime 6,1,rct ' time for the volts to fall to 1.3
 high 6 ' discharge the capacitor
 light=65535/rct ' ❒ light=constant/rct
 debug dec rct,tab,dec light,tab, bin light,cr ' ❒ display
 pause 400 ' ❒ slow things down
goto loop

The constant 65535 is arbitrary. The important thing is that the light is proportional to 1/rct. The exact value
of the proportionality constant will be determined when we calibrate the sensor against a light source of
known intensity, like the sun, or a standard light bulb.

Theory:

For those of you who are interested, the theory here is the same as for Experiment #3. The voltage across the capacitor here must
change by 3.7 volts (see Figure 4.8), instead of 1.3 volts (see Figure 3.7). The formula is:

2*rct = C * 3,700,000 / i

(2*rct) is in microseconds, C is in microfarads, and i is in microamps. This shows the theoretical inverse relation between the
photocurrent, i, and the rct variable that comes out of the RCtime command. The photocurrent is proportional to the light
intensity falling on the photodiode. However, unlike the AD595 temperature probe, where the calibration constant is 1 uA/K, there
is not an exact equality between standard units of light and photocurrent. But it doesn't matter. All the constants can be lumped
into one that can be determined at the time of calibration:

rct =constant / (light level) or light level = constant / rct

Experiment #4: Light on Earth and Data Logging

Earth Measurements Student Guide Version 1.2 • Page 87

When you run the program, observe how the numbers in the second column on the screen increase in bright
light. And the numbers in the first column decrease, as the capacitor charges more rapidly from the larger
photocurrent.

The final column is included, not so much so you can see the binary value of the light level (BASIC Stamp
Manual Version 1.9, page 256), but because the length of the binary number, from 1 to 15 binary digits, is
proportional to the logarithm of the light level. One digit is added for every doubling of the light intensity. Try
taking your light meter from very dim to very bright to see what we mean. Logarithms are useful for dealing
with phenomena that vary over huge ranges. As another example, the VU meter on a stereo sound system
shows you a logarithmic graph of sound level. Our ears, like our eyes, can accommodate over a tremendous
range of sound levels. In technical terms, the length of the binary number shows the integer part of the
logarithm to base 2. The same is true for the decimal number in the second column, that it adds one digit for
each factor of 10 increase in light level, but that is harder to perceive. You can try replacing bin light in
the debug statement with rep 42\ ncd light. This prints a string of stars, instead of the actual binary
number. The ncd operator (BASIC Stamp Manual Version 1.9, page 237) is the closest thing the BASIC Stamp
has to a logarithm function.

Let's look now at the effect of the capacitor on the reading. With a 0.01 uF capacitor in the circuit, place the
Board of Education in a place where the light is constant, and note the reading. Now find the second 0.01 uF
capacitor in your kit, and install it on the Board of Education in parallel with the first one, as in Figure 4.9.
Now (with the same light level as before) observe the rct and the light level readings. The rct reading should
be about twice what it was before, and the light reading in the second column should be about 1/2 of what it
was. This is because the value of the capacitor enters into the calculation of the calibration constant, as
shown in the theory box. If the current from the photodiode is constant, then doubling the capacitor value
also doubles the time it takes for the capacitor to charge down to the threshold.

Figure 4.9: Parallel Capacitors
By adding the second capacitor in the circuit in a
parallel fashion, the rct reading will double from what
we've measured before. The value of the capacitor
enters into the calculation of the calibration
constant.

Experiment #4: Light on Earth and Data Logging

Page 88 • Earth Measurements Student Guide Version 1.2

The capacitors we are using are of a type called "polyester film" capacitors. They are desirable because of
their stability. Temperature changes do not affect their capacitance. We need a stable capacitor like that, so
that the RCtime value will only depend on the current from the photosensor.

Now remove both of the capacitors, so that there is no capacitor at all in the photodiode circuit. (Be sure you
are getting the photodiode capacitor, not the temperature capacitor). It still works! The actual numbers don't
mean anything, but you should find that it acts just as if there were a capacitor in the circuit. It will be
sensitive to very low levels of light. Take it into the shadows to see. As a matter of fact, there is a capacitor in
the circuit. The input gate on the PIC 16C57 microcontroller on the BASIC Stamp has a built-in capacitance of
about 50pf (picofarads). In addition to that, the wiring of the white block breadboard contributes capacitance.
Remember, capacitance exists whenever electrical conductors come close to one another, by intent or not.
This is called stray capacitance, because it was not really intended to be there as part of your circuit. The
combination of the PIC input capacitance and the capacitance of the white block wiring add up to the
equivalent of about 250 pF of stray capacitance. Put in a 100 pF capacitor where you just removed the 0.01 uF
one. The reading will not change too much. The capacitance has only gone from about 250 to 350 pf, not from
zero to 100 as you might have expected. Put a second 100pf capacitor in parallel with the first. The readings
will not change by a factor of 2, because the capacitance has gone from about 350 up to 450, not from 100 to
200. Often when things do not turn out the way you expect, it is due to stray circuit elements for which you
are not accounting.

Now remove the two 100 pF capacitors, and restore the single 0.01 uF capacitor in your Board of Education
light meter. Hold the light meter in a bright light source. If you have it, use a 50-watt R20 spotlight (the kind
used in track lighting). If you don't have this type of bulb an alternative would be a 100 watt bulb. The light
intensity of such a light source facing the center of the beam at one-meter distance is about 425 lux (40
candlepower). Write down the light reading you see in the second column on the computer screen.

 light (raw reading, second column) = _________DDDDDDDDDD

This may be easier said than done. You may find that the reading on the computer screen fluctuates up and
down quite a bit, making it hard to decide what the "reading" really is. These fluctuations come from a couple
of different sources. Not the least of them is that the light level is really fluctuating, very fast, faster than your
eye can perceive it. The intensity of the lamp depends on the power line voltage, so we should really
emphasize again that its intensity is approximately 425 lux at one meter. The AC line voltage that drives the
lamp goes from zero to 170 volts, 120 times per second. As this happens, the intensity flickers. The filament in
the lamp stays glowing hot, due to its thermal mass, but the output does fluctuate on a time scale of 1/120th
of a second, about 10 milliseconds. Along comes the photodiode and the BASIC Stamp, to sample the light in
less than one millisecond. Sometimes it samples the highs, and sometimes it samples the lows.

Experiment #4: Light on Earth and Data Logging

Earth Measurements Student Guide Version 1.2 • Page 89

There are ways to average all this out, but for now, just take it as a lesson. Make a rough estimate of your
average value. Look at the readings first to find a minimum value, and then look for the maximum value. Make
your estimate halfway in between.

 minimum? __________
 maximum? __________
 mean? __________

Now, see if you can find a scale factor so that the program displays the numerical value in standard units of
425 lux, instead of the raw value in arbitrary units, when the sensor is in position in front of the lamp.

(raw reading) * (scale factor) = 425 lux

For example, if the raw reading happens to be 168, then on a calculator you would multiply times 2.53. That
number is found by using

(scale factor) = 425/168 = 2.53

Subsequently you can move the light meter into an unknown area and find the actual light level there in units
of lux, because light meter is calibrated.

(new light level in lux) = (raw reading) * 2.53

The trouble is, the BASIC Stamp (like most microcontrollers) uses integer math. It does not have fractions.
Well, not quite true. The BASIC Stamp II has a peculiar math operator called */ that is called fractional
multiply. The catch is that the fraction has to be one of these specific values: 0, 1/256, 2/256 and so on, up to
256/256 (unity) and so on: 257/256 (one + 1/256th), up to 65535/256 (255 + 255/256ths). All these fractions
have a denominator of 256. The factor that goes on the right side of the */ is the numerator of the fraction,
and the denominator of 256 is implied. Here are some examples:

Y = X */ 256 ' is the same as Y = X, because 256/256=1
Y = X */ 128 ' is the same as Y = X* 1/2, because 128/256 = 1/2
Y = X */ 384 ' is the same as Y = X* 3/2, because 384/256=3/2
Y = X */ 647 ' is the same as Y = X * 647/256 ...

It so happens that 647/256 is the close to 2.53, which is the scale factor we need. Try it:

647/256 = ______?.............. 168 * (647/256) = ______??...............
close to 2.53? close to 425?

Experiment #4: Light on Earth and Data Logging

Page 90 • Earth Measurements Student Guide Version 1.2

Here is how to find the value to put on the right side of the */. You have the raw light reading, say it is 168.
You have the known value of light intensity, say 425 lux. Then the factor to put on the right side of the */ is
425*256/168=647. Using your value from page 88 in place of the 168:

 425 * 256 / (your raw reading) =?__________?.............

The equation in the program now becomes:

light = 65535/rct*/647 ' computes light from left to right

(but you use your own constant in place of the 647). When you run the program with this change, it should
display 425 on the debug screen in the second column, when the sensor is placed one meter in front of the
calibration source. Now, as you take the light meter around the room, the reading will be displayed in
standard units of lux. This is a "ballpark" calibration. But it demonstrates the idea, and how the */ operator
can help with the math (BASIC Stamp Manual Version 1.9, page 242). Calibration of analog sensors often
involves multiplying a raw reading times a fraction, so understanding how to use the */ operator can be a
great help.

Experiment #4: Light on Earth and Data Logging

Earth Measurements Student Guide Version 1.2 • Page 91

Temperature and Light Meter

Do you still have your temperature sensor probe hooked up? We hope so. If not, hook it back up according to
Figure 3.8, and enter the following program. Please enter your own values for the calibration constant for the
light sensor, the one you just found, 647 in our example. And also enter your own constant, Kal, for the AD592
temperature sensor, from Experiment #3 on page 61. That number goes in the place of the 15068 below.

' Earth Measurements program 4.3
' light intensity and temperature
kal con 15068 ' ❒ calibration constant for AD592 temperature.
lical con 647 ' ❒ calibration constant for photodiode
 ' Use Your Own Calibration Constants!!

rct var word ' variable for RCtime
light var word ' variable light intensity

TC var word ' ❒ for degrees Celsius from AD592
low 5 ' ❒ discharge the temperature capacitor
high 6 ' discharge the photodiode capacitor
loop:
 RCtime 5,0,rct ' ❒ read the temperature probe
 low 5 ' ❒ discharge the temperature capacitor
 TC=kal/rct*10+(kal//rct*10/rct)-273 ' ❒ calculate Celsius
 RCtime 6,1,rct ' read the photodiode
 high 6 ' discharge the photodiode capacitor
 light=65535/rct*/lical ' ❒ calculate lux
 debug dec TC," C",tab,dec light," lux",cr ' ❒ display
 pause 400 ' slow down the loop
goto loop

Now you have both temperature (first column) and light readings (second column) on screen, with units.
That's progress! Compare the two RCtime instructions that go with the temperature and the light level. Be
sure you understand why the two instructions are different, in relation to how the circuits are set up. Get this
working before you proceed to the next section.

Experiment #4: Light on Earth and Data Logging

Page 92 • Earth Measurements Student Guide Version 1.2

Light and Temperature Logger, Using RAM Memory

Now let's make the program store up a bunch of readings. We have already discussed in earlier lessons why
data logging is important. It's time to get down and do some of it. The ultimate goal is to log data in the
EEPROM memory of the BASIC Stamp. But for now to keep it simple we will log data in the RAM memory of the
chip. Recall from Experiment #1 that there are only 26 bytes of RAM available for our general purpose use in
the BASIC Stamp II. We will set aside 18 bytes of that for the data log shown in Figure 4.10.

The instruction to reserve 18 bytes in RAM will be,

log var byte(18)

These bytes are like 18 bins in a row, numbered from 0 to 17, and we are going to store temperature values in
the even numbered bins and light intensity values in odd numbered bins. In the program, will refer to these
bins by using an index inside parentheses:

log(0)=TC ' stores a temperature reading in the first bin
light=log(9) ' retrieves a light reading from the 10th bin.
light=log(n) ' bin number is held in a variable, n.

 ' when n=9, retrieves the light value from the 10th bin

On signal from the pushbutton, the program will acquire a temperature and a light level reading, and it will
store the numbers in the next two available bins. When all the bins are full, the program will make a special
protest beep to annunciate the fact, "memory full". When you make a special long press on the pushbutton, all
of the values in the 18 bytes will be displayed on the debug screen. To erase the data and start over, all you
have to do is press the reset button. That "re-zeros" all the bins and the pointer.

Figure 4.10: Allocation of Memory
for Log File

Experiment #4: Light on Earth and Data Logging

Earth Measurements Student Guide Version 1.2 • Page 93

Modify program 4.3 as follows (changed or new lines are shown with the ❒):

' Earth Measurements program 4.4
' temperature and light intensity logging in RAM
kal con 15068 ' calibration constant for AD592 temperature.
lical con 647 ' calibration constant for photodiode
 ' Use Your Own Calibration Constants!!
log var byte(18) ' ❒ 18 bytes reserved for the log file.
rct var word ' variable for RCtime
light var word ' variable light intensity
TC var word ' for degrees Celsius from AD592
n var byte ' ❒ counter for the pushbutton
ptr var byte ' ❒ pointer to next entry in data log file

outs=%0000000001000000 ' ❒ now put in the outs and dirs statements.
 'fedcba9876543210
dirs=%1111111111111101 ' ❒ all are low outputs
 ' ❒ except P6 is high output to discharge C
 ' ❒ and P1 is input for pushbutton

debug cls,"ready to log data!",cr ' ❒
freqout 0,200,2550 ' ❒
freqout 0,400,3400 ' ❒
mainloop: ' ❒
 if in1=1 then mainloop ' ❒ loop here until the button is pressed
 n=0 ' ❒ this will count how long the button is down
clik1: ' ❒
 pause 100 ' ❒ time the button in 0.1 sec increments
 if n>12 then playback ' ❒ jump to the playback routine after 1.2 second
 n=n+1 ' ❒ increment time
 if in1=0 then clik1 ' ❒ loop until button goes up, or time runs out
getdata: ' ❒
 if ptr>17 then honk ' ❒ protest if the memory is full
 freqout 0,10,1900 ' ❒ sound to show we got here

 RCtime 5,0,rct ' read the temperature probe
 low 5 ' discharge the temperature capacitor
 TC=kal/rct*10+(kal//rct*10/rct)-273 ' ❒ calculate Celsius
 log(ptr)=TC ' ❒ store temperature
 ptr=ptr+1 ' ❒ point to next bin

 RCtime 6,1,rct ' read the photodiode
 high 6 ' discharge the photodiode capacitor
 light=65535/rct*/lical ' calculate lux
 log(ptr)=light/2 max 255 ' ❒ store light intensity/2

Experiment #4: Light on Earth and Data Logging

Page 94 • Earth Measurements Student Guide Version 1.2

 ptr=ptr+1 ' ❒ point to next bin

 debug dec TC," C",tab,dec light," lux",cr ' display!
goto mainloop

playback: ' ❒ Show all 9 readings on debug screen
 freqout 0,50,2550 ' ❒ feedback
 freqout 0,100,3400 ' ❒
 debug cls,"logged data!",cr ' ❒ message on screen
 debug "degC",tab,"Lux",cr ' ❒ print units of measurement
 for n=0 to 16 step 2 ' ❒ will show 9 records
 TC=log(n) ' ❒ get temperature
 light=log(n+1)*2 ' ❒ get light
 debug dec TC,tab,dec light,cr ' ❒ display
 next ' ❒ next record of 9
pb1: ' ❒ finished showing
 if in1=0 then pb1 ' ❒ wait for the pushbutton to go up
 debug cr,"press RESET to erase data",cr ' ❒ print message
 goto mainloop ' ❒ back to the top

honk: ' ❒ come here if memory is full
 debug cr,"memory full" ' ❒ message
 freqout 0,50,3400 ' ❒ noise
 freqout 0,200,2000,2100 ' ❒
goto mainloop ' ❒ back to the top

When you run the program, you should be able to press the button 9 times to collect 9 records of
temperature and light level. After that, the program should make the "memory full" beep. At any time, if you
hold down the button for >1.2 seconds, then the program should display all 9 of the records on the screen.

You can leave the debug window open on the screen, and go off and do
an experiment to collect 9 records, and then come back to the computer
to play them back. When you are ready to start over, press the reset
button on the Board of Education.

In the Windows version of the STAMP2W.EXE software, you can open the
debug window whenever you want. In the DOS version, you have to
reload the program to reopen a debug window. If you are using the DOS
version of the software, just leave the debug window open when you go
off to do an experiment.

Records and fields:
Each line, or row, of data is a record.
Each reading across is a field. The
first field here is temperature in units
of degrees Celsius, the second field is
light in units of lux. The fields line up
in columns. The file here consists of
up to 9 records. This terminology is
commonly heard in relation to
spreadsheets and databases.

Experiment #4: Light on Earth and Data Logging

Earth Measurements Student Guide Version 1.2 • Page 95

We'll comment on the program itself, then move on to some experiments you might want to try.

This program starts off with the outs and the dirs statements. They replace the HIGH 5 and LOW 6 that
were there in Program 4.3. Note that the sixth position in the outs statement is 1, and the 5 position is zero.
That makes P6 high and P5 low, as is required to discharge the two capacitors. The P1 position in the dirs
statement is a zero, which makes P1 an input. The other pins on the BASIC Stamp are all set to be low outputs,
as a matter of good programming practice.

The program starts off with familiar single click and long click routines for the pushbutton. The label
here is not "clik" and "clik1", but you should recognize it at the same code. When the button is down, there
is a race between the timer and the button. If the timer passes the 1.2 second mark, then the program jumps
to the playback routine.

But if the button is released before the 1.2 seconds, then the program goes right into the getdata routine.
There, it reads the temperature probe and the light probe just as in Program 4.3. Then it puts the
temperature value in the bin that is pointed to by the variable, ptr. Then ptr is increased by one. Then it puts
the value of light/2 into this next bin. Then ptr is increased by one again to point to the next empty bin.

At the top of the getdata routine, the program tests the value of the pointer, and jumps to the memory full
message if the pointer is greater than 17. The program does not allow itself to collect more data than will fit
in the allotted space. You might try taking out this line, just to observe what sort of error will occur!

Why log the value of light divided by 2, instead of simply light as it is? The bins only hold byte-size quantities,
less than or equal to 255. That is fine for Celsius, which will be in the range of 0-100. But the light level might
get higher than that. It was calibrated at 425 lux. By dividing by 2, light values of up to 511 lux can be stored.
The downside is a loss of resolution, but it is not significant in light of our "ballpark" calibration. When we read
the light values from the log, we will multiply them by two to get back the original value. Note that light/2 is
followed by max 255. The 255 is a signal that your data is out of range.

The playback routine uses a for-next loop to step through all 9 records.

 for n=0 to 16 step 2 ' ❒ will show 9 records

The "step 2" makes the value of the index, n, take on the even values, 0,2,4,6,...,16. That is a total of 9 steps.
(See the BASIC Stamp II manual, page 261.) The value of temperature is read first from log(0), and light from
log(1), and these values are displayed on screen. Note that light is multiplied by 2 to reconstruct the original
value. Then the for-next loop bumps up the value of the index to 2, and fetches and displays log(2) and
log(3), and so on up through log(16) and log(17).

Experiment #4: Light on Earth and Data Logging

Page 96 • Earth Measurements Student Guide Version 1.2

Why does the program use n as the pointer, instead of ptr? First, understand that it doesn't matter what
variable goes in parentheses after the log(). The only thing that matters is the numerical value of what is in
the parentheses. By using "n" as the pointer, the value of "ptr" is not disturbed. Let's say you have already
acquired 5 readings, and then you do the long click to read out what you already have for those 5. You can
then continue where you left off and collect readings 6 to 10, and then do the long click to read them all out.
It is just a small refinement.

At the end of the playback routine, the program reminds you that you have to press reset in order to start
over with a clean slate.

This program uses every single RAM variable available in the BASIC Stamp. Two bytes each are used for the
word variables, rct, TC and light, and one byte each for the indexes n and ptr, and 18 bytes for the log file.
That adds up to 26. Add one more variable to the program. When you try to run it, you will get an error
message, "out of variable space."

Experiment #4: Light on Earth and Data Logging

Earth Measurements Student Guide Version 1.2 • Page 97

Experiments with the Data Logger

1) Verification or 1/r^2 dependence for the light source.

Prepare a string with knots at one meter, 1.5 meter, 2 meters, 2.5 meters and so on up to 4 meters.
Connect the string to the side of the fixture holding the 50 watt, R20 spotlight. Reset your Board of
Education to clear the data log. Collect data at each distance from the light source, taking care to stay in
the center of the beam. Upload your data to the PC debug screen. Graph the readings as a function of
position. Verify that the intensity of light falls off as 1/r2. This is a "ballpark" experiment. Think of some
factors that might make the results less than perfect. Don't forget about the fluctuations we discussed
earlier!

2) Investigation of the light distribution from the spotlight.

Prepare a protractor, using the above string, and some ingenuity, so that you can hold the light sensor at
10 different angles around the center of the beam from the spotlight. Collect the readings and graph
them.

3) Rate of heating and cooling, timed logging.

Hold the temperature probe a few inches from the lamp, and press the button at regular 15 second
intervals. Then take the sensor away take 4 more readings at the same rate. Upload the data and graph
the temperature as a function of time. Wouldn't it be nice to have the data logger press the button for
you, at regular intervals? Easily done. Change the mainloop routine as follows:

mainloop: ' changes to program EM4.4
n=0...................... ' ❒ initialize the time counter
ml1: ' ❒ loop here until button or time
pause 1000 ' ❒ one second pacing
if n=15 and ptr<17 then getdata ' ❒ get data at 15 second intervals
n=n+1 ' ❒ count time
if in1=1 then ml1 ' ❒ can press button to get data too.
n=0
clik1: ' ... and so on as in program EM4.4

You can put in whatever number of seconds you need. Press reset to start your experiment. The routine
still accepts clicks for data logging. The number n can be up to 65535 seconds--more than 18 hours
between readings--if you care to start a long term experiment!

Experiment #4: Light on Earth and Data Logging

Page 98 • Earth Measurements Student Guide Version 1.2

4) Alternative scale for the light sensor, for brighter light, easy method.

If you want to measure brighter light, outdoors in sunlight for example, here is an easy "ballpark" way to
go about it. Put the 0.22 uF capacitor in place of the 0.01 uF capacitor in the photodiode circuit. Put a
factor of 22 in the three lines that calculate the light intensity:

light=65535/rct*/lical*22 ' calculate lux

and

log(ptr)=light/44 max 255 ' ❒ store light intensity/44

and

light=log(n+1)*44 ' ❒ get light

This works because the new capacitance is 22 times the old capacitance. The rct value that used to be
produced at 100 lux is now produced at 2200 lux. Recall the effect of doubling the capacitance earlier in
this lesson. The old range of measurement was 0 to 512 lux. That is now 0 to 11264 lux.

5) Alternative scale for the light sensor, calibration in full sun.

This will give a reading in PAR, in units of micromoles quanta per square meter per second. If you read the
box about light intensity, this is the measurement used for plant growth. This is again a ballpark
calibration! Our photodiode does not have the filters that would limit it to the wavelengths best for plant
growth. Put the 0.22 uF capacitor in place of the 0.01 uF capacitor. Temporarily make the constant lical
equal to 256, and take out the divide and multiply factors in the light calculations:

lical con 256 ' ❒ calibration constant for photodiode
log(ptr)=light max 255 ' ❒ store raw light intensity
light=log(n+1) ' ❒ get light

Recall that in using the */ operator, */256 is like doing nothing. It is the fraction 256/256, unity. Place
the photodiode sensor directly facing the outdoor sun. Of course, you may have to to go outside with the
Board of Education running on a battery on a sunny day to do this! You can log data by pressing the
button, or by using the timed data mode. Upload the data to the PC. (Note: if the light readings are 255,
that means it is out of range, too bright. Put a piece of two of tissue paper over the sensor, held with a
rubber band, and try again.) Take the raw value of light shown on screen in the second column. Suppose
it is 188, and multiply it times 256, and divide by 200. This is the new value for lical. For example,
2000*256/188=2720.

Experiment #4: Light on Earth and Data Logging

Earth Measurements Student Guide Version 1.2 • Page 99

lical con 272 ' calibration constant for photodiode

and

log(ptr)=light/10 max 255 ' ❒ store PAR/10

and

light=log(n+1)*10 ' ❒ get PAR

Also, change the units of measurement in the debug statement from lux, to PAR. The reading now when
the logger in full sun should be about 2000.

6) Use your logger to explore the temperatures and light levels in the outdoor environment!

You can set the time for automatic logging for 2 hours (7200 seconds), and come back in 18 hours to see
what happened to time and temperature while you were away!

Experiment #4: Light on Earth and Data Logging

Page 100 • Earth Measurements Student Guide Version 1.2

Challenge!

Do you understand energy per unit area? A certain laser puts out a total
energy of one milliwatt into a beam with an cross sectional area of one
square millimeter. How does the intensity of that light compare with
the intensity of sunlight, which is about 1000 watts per square meter?

Assignment: Pluto You are planning to visit the planet Pluto, and you want to know how bright the light will
be there. Guess--would it be enough to read this page comfortably? (a) Estimate Pluto's daytime illumination
in lux. (the earth is 149,500,000 kilometers from the sun, while Pluto averages 5,920,000,000 kilometers from
the sun. On Earth, with the sensor pointed directly at the sun, we measure about 110,000 lux. Approximately
what value in lux will you measure when you point the light meter at the sun from Pluto? (b) Using your
calibrated BS2 light meter, find a place in your environment where the ambient light level falling on this page
would be comparable to what you will experience outdoors on the sunny side of Pluto.

Reaction Time Tester Install a light emitting diode and 470 ohm resistor on your Board of Education so that a
HIGH 9 instruction can turn it on, and LOW 9 can turn it off. Write a program that does the following to test
your reaction time. When you press and hold down the pushbutton, the program waits a random amount of
time from 1 to 15 seconds, and then turns on the LED. Then you then have to release the pushbutton as fast as
you can. The program should use the RCtime instruction to measure the time it takes to release the button.
Then it displays your reaction time in milliseconds on the debug screen, turns off the LED, and goes back to the
top to await another round. The program should test to see if you released the button before the LED goes on,
and call you a "cheater" if you do.

Colorimeter In your kit you have a red and a green light emitting diode. Not only can these diodes emit light,
they can also act as photodiodes to receive light. That is, the reverse current in the LED is proportional to light
level hitting it. They respond best at the same color they emit. So a red LED responds most to red light, and
green to green. Hook up the red and the green LEDs as shown in Figure 4.5 except use BASIC Stamp I/O pins
P8 and P9, and use 100pf capacitors. The current produced by the LEDs is very small. You may reverse the
position of the diodes and the capacitors to get more sensitivity if needed. Write a program that reads the
output of both sensors in succession and displays the result on the debug screen. With the sensors in bright
white light, the two readings will be different, because two diodes will have different natural sensitivities.
Adjust the amount of light reaching the diodes, or adjust the scaling in the program, so that both readings are
the same in white light. Then try putting red and green filters in front of the diodes. Have the diodes look at
different colors of paper or through different filters, or at the light from a prism.

Experiment #5: The Liquid Environment

Earth Measurements Student Guide Version 1.2 • Page 101

Experiment #5:
The Liquid
Environment

The theme of the Liquid Environment experiment is "level and
conductivity of water as examples of sensors of the liquid
environment." This is a more difficult kind of sensor, but we'll
continue with the data logging experiments. The activities
associated with this experiment consist of: (1) Conductivity
using ON-OFF input or Rctime, and its shortcomings; (2a)

Add a 555 oscillator as an input to the Board of Education and experiment; (2b) Use the 555 oscillator for
measurement of conductivity in water using stainless steel probes; and (3) Add a conductivity measurement to
the data logger from Experiment #3.

Introduction

The view of Earth from the moon in 1969 cleared up for once and for all that we live on a water planet.
Scientists, farmers, emergency response agencies, the general public, everybody needs to know some "how,
when, or why" about water. When is it going to rain? How deep it is. How cold, how hot, how clear, how
clean. What minerals, what organic materials it contains. How fast it moves. How much is underground? How
long has it been there? How much water is in the ice caps, the oceans, the rivers, in living tissue? How do
raindrops form? What makes an El Niño event? What happens inside a cloud when it snows? Is there danger of
landslides, droughts, floods, or famines? Can a cactus survive here, a frog, a mouse? Can I drink it? Are our
wetlands disappearing? Should we care?

So, water will be the third variable we get to in Earth Measurements. What can you measure about water? I
am sure that you can think of hundreds of things right off the bat. We will concentrate on a couple. The first is
to detect its presence, or its level. This is the sort of measurement that is needed in order to monitor or
control the level of water in a stream, or a fish farm, or a water treatment plant, or when it is a question of
when to irrigate a field or a potted plant. The second type of measurement will be the electrical conductivity
of water. This is a measurement that is used to detect the presence of salt and minerals in water, and it is also
used to assess the quality of drinking water or to study the mixing of fresh and salt water in a tideland or an
estuary. There are many kinds of water measurements that require different sensors, like how acidic it might
be, or how clear it might be. It is a big field, with lots of research going into the development of sensors that
can detect the quality of water.

Measurements in the liquid medium are more problematic than measurements of temperature or light. The
sensor probes that detect temperature or light do not actually have to contact the medium electrically. In
contrast, wetness sensors often do have to come in direct contact and are subject to corrosion and all sorts
of electrical interactions with metals, ions and currents in the liquid medium itself.

Experiment #5: The Liquid Environment

Page 102 • Earth Measurements Student Guide Version 1.2

Following that observation, we want to make an IMPORTANT precautionary note. Water and electricity don't
mix, usually, without planning. Do not, we repeat, do not by any mistake by spilling water on your Board of
Education. And always be careful about your own safety when working around electricity and water.

Parts
Required

The following parts are required for this experiment:

(1) LMC555 cmos timer
(4) jumper wires
(2) 0.1 uF capacitor
(1) 100 ohm resistor
(2) 100K ohm resistor
(1) conductivity probe (couple of 2" screws 0.4" apart threaded through the green PCB cup spanner

included in the kit with nylon nuts holding them on the PCB)
(1) cup
(1) water and salt

Build it!

Wetness Alarm

In Experiment #3 you experimented with the conductivity probe in your kit, as a way of introducing the
RCtime command. Now construct the circuit shown in Figures 5.1 and 5.2.

Experiment #5: The Liquid Environment

Earth Measurements Student Guide Version 1.2 • Page 103

Figure 5.1 Conductivity Probe Pictorial

• 100K resistor from Vss (pin 4 of the

DS1620) to node A.
• 100 ohm resistor from node A to P10.
• conductivity probe from node A to Vdd.

Experiment #5: The Liquid Environment

Page 104 • Earth Measurements Student Guide Version 1.2

Figure 5.2: Conductivity Probe
Schematic

Now enter the following program:

Experiment #5: The Liquid Environment

Earth Measurements Student Guide Version 1.2 • Page 105

' Earth Measurements program 5.1
' wetness alarm
loop:
 debug bin in10
 if in10=0 then loop
 freqout 0,6,2550
 goto loop

Have a cup of water handy. This is your basic water detector and alarm. When you run the program, you will
not hear anything until you dip the probe in the water. The program here is like the pushbutton routines you
studied in Experiment #2, where pushing down the button made the "cricket" sound. Here, the conductivity
probe in water takes on the role of the pushbutton. Recall the discussion of the conductivity probe as a
variable resistor in Experiment #3. Explain what is going on by adding remarks to program 5.1.

What happens if you replace the in10=0, with in10=1? Think of a situation where that flavor of alarm might
be useful.

Why is a 100K resistor chosen for the circuit? The resistor sets the sensitivity. With higher resistance values,
we would run the risk of the circuit saying "wet!" even if a little condensation forms on the wiring. With lower
resistance values, that type of error becomes less likely, but on the other hand, the sensor might fail to say
"wet" when it should, if the water happens to be especially pure and non-conductive. It comes down to trial
and error.

Try a 1K resistor in place of the 100K. (You can also borrow the 1K temporarily from pin 1 of the DS1620
temperature sensor.) You will find that you have to get the probe much wetter than before, to get the alarm.
This kind of wetness alarm is used to train toddlers not to wet their bed. A pad absorbs urine and sets off the
alarm. A similar circuit is used to set off the alarm in industrial plants if there is a spill.

Imagine expanding this circuit to control water level. If the water is spilled, we could turn on a pump clean it
up. Then when sensor tells us the level is down, we turn the pump off. That is how a sump pump works, to
keep water out of someone's basement, or a bilge pump to keep water out of a boat. But we are getting
ahead of the game. That is the topic for Experiment #6. At this point the game is to look into quantitative
analog measurements, not just "yes/no", but "how much water", and "water of what quality?"

Experiment #5: The Liquid Environment

Page 106 • Earth Measurements Student Guide Version 1.2

Measurement of Conductance Using RCtime

Replace the 100k resistor in the above circuit with a 0.1 µF capacitor. This is now precisely the circuit of
Figure 3.4. And enter the program, which is Program 3.2 revisited:

' Earth Measurements program 5.2
' RCtime measures conductivity.
rct var word ' a word variable for RCtime
n var byte ' variable for the bar graph
low 10
loop:
 RCtime 10,0,rct' time for the volts to rise to 1.3
 low 10 ' discharge the capacitor to 0 volts
 rct=rct-1 ' calculate length of bar graph
 debug dec rct,tab, rep "*"\ncd rct,cr ' display ascii art bar graph
 pause 1000 ' slow it down to 1 per second.
goto loop

Now you have a digital output that reflects the resistance of the water between the probes. Observe how the
numbers change as you change the depth of the probe in the water.

Probe Location rct Reading
Probe not in water
Probe tip only touching water
Probe 1cm in water
Probe 2cm in water
Probe 3cm in water

Do you see a trend? Try repeating the measurements a few times, and write down the numbers. Are the
readings repeatable? That is, do you get the same result each time? Allow the probe to sit at depth for a
minute or two in the water.

Here are a couple of program notes.

First, why include the formula, rct=rct-1? The reason is to make the graph look better. As you pull the probe
out of the water, the number rct gets larger and larger, but suddenly when the probe leaves the water, rct
suddenly goes back to zero. That is due to a peculiarity of the RCtime command, which returns the value "0"
as a kind of error message when it runs over its maximum value. By putting in the formula rct=rct-1, we
are in effect making "aces high".

Experiment #5: The Liquid Environment

Earth Measurements Student Guide Version 1.2 • Page 107

When you subtract 1 from zero in integer arithmetic, you get 65535. When you use microcontrollers, or really,
when you program any computer, you often have to compensate for the little peculiarities of the commands
available to you.

How about the graph? It uses a debug modifier:

 rep"*"\ncd rct

You know rct is the variable. rep is short for "repeat". It repeats printing the character "*" on the debug
screen, and the number of times it repeats is given by the number after the "\|. For example:

 debug rep "*"\12

would print 12 stars in a row on the screen. You could also program that as:

 debug "************"

But doing it with "rep" is more concise. And the number after the "\" can be a variable, which can be very
useful. Here the variable after the "\" is actually an expression that results in a number. The expression is
"ncd rct". The ncd is a math operator unique to the BASIC Stamp. The result is just the length of the number
rct in binary form. For example, if rct=35 in decimal, its binary form is rct=%100011. The length of that
binary number is 6 binary digits. Run that through the ncd operator, and ncd rct returns the value, 6, and
six stars are printed on the debug screen. Maybe you will never have to use that command! But there it is, to
add to your bag of programming tricks. The number of stars increases by one for each doubling of the value
of rct.

Make one more measurement series for the above table. Reverse the connection of the conductivity probe to
the Board of Education. That is, take out the probe wire that connects to node A, and connect it to Vdd
instead, and take the probe wire that was in Vdd and connect it to node A instead. Make the series of
measurements again in the above table. You will probably find that the numbers are a little different.

The difference is due to what is going on in the liquid medium, as electricity passes through it from one probe
to the other.

The effect you are seeing is called "polarization". Chemical reactions are actually changing the electrode. This
is not a big deal for the simple on-off kind of sensor, but it is a disaster for quantitative measurements.
Polarization occurs because the electrical current is constantly moving in one direction through the probe. It
is direct current, DC. The simple cure is to drive the sensor with current first one direction and then other.
That is alternating current, AC. Many of these chemical reactions are reversible, up to a point, so the
alternating current leads to much more stable readings. The BASIC Stamp can't supply the necessary AC

Experiment #5: The Liquid Environment

Page 108 • Earth Measurements Student Guide Version 1.2

signal. An external chip can help here. It is one you are already familiar with from "What's a Microcontroller"
Experiment #5, the 555 timer chip.

Measurement of Conductance Using the 555 Timer IC

Remove the parts from the above experiment, and install the 555 timer IC on the Board of Education. Be
attentive since the wiring is getting tight! A pictorial for this circuit is shown in Figure 5.3, and a schematic is
shown in Figure 5.4.

Figure 5.3 Conductance Using the 555
Timer IC Pictorial

• Plug the 555 timer integrated circuit

into the Board of Education in the
position just below the DS1620. Match
the notch at the end with pin 1.

• 555 pin 8 to Vdd (pin 8 of DS1620)
• 555 pin 1 to Vss (pin 4 of DS1620)
• 555 pin 2 to 555 pin 6
• 555 pin 4 to P9
• 555 pin 3 thru 100 ohm resistor to P10
• 100K resistor between 555 pin 2 & 3
• 0.1µf capacitor between 555 pin 1 & 2

Experiment #5: The Liquid Environment

Earth Measurements Student Guide Version 1.2 • Page 109

Figure 5.4 Conductance Using the 555
Timer Schematic

Space on the breadboard is becoming very
limited. Follow the pictorial to make the
project fit on the breadboard.

Experiment #5: The Liquid Environment

Page 110 • Earth Measurements Student Guide Version 1.2

This circuit is similar to the one you built in "What's a Microcontroller?" Experiment #5. It is an astable
multivibrator. That is terminology held over from the early days of electronics. All it means is that the circuit
output (pin 3 of the 555) alternates from high to low repeatedly on its own. The resistor from pin 3 to pin 2,
along with the capacitor from pin 2 to pin 1, determine the frequency of oscillation. P10 on the BASIC Stamp
will be configured as an input so that it can monitor the frequency produced by the 555. I/O pin 9 will be
configured as an output that can turn the 555 ON or OFF. When P9 is high, the 555 is ON. (If you look back at
"What's a Microcontroller?", you will notice that the circuit here is different. There are several ways to hook
up the 555 chip, in fact, there are entire books devoted to nothing but the 555.)

Enter and run the following program:

' Earth Measurements program 5.3
' Test of the 555 oscillator
cnt var word ' a word variable for count
high 9 ' turn on the 555 oscillation
loop:
 count 10,1000,cnt ' count for one second
 debug dec cnt,cr ' values
goto loop

Here are the parameters of the BASIC Stamp II count command:

 count 10,1000,cnt ' count
 ^^^-------RAM variable for the result of counting
 ^^^------------count this long in milliseconds, duration
 ^^----------------pin to use for counting, a stamp input.

The reading you see on screen when the duration is 1000, should be about 75. Write down your reading.

reading, cnt=? when count duration is 1000, 100K resistor, 0.1uF capacitor.

Experiment #5: The Liquid Environment

Earth Measurements Student Guide Version 1.2 • Page 111

Now place a second 100K resistor in parallel with the first, side by side in the Board of Education. The parallel
combination of two 100K resistors is a resistance of 50K (the series combination gives 200K). The frequency
should be about double. Enter the value in the table below. Now put the two 100K resistors in series from pin
2 to pin 3 of the 555. The frequency should now by 1/2 of the original value. Also put this in the table below.
Calculate the value of 1/R, which is called the conductance, and has units of siemens (an older, more colorful
term for conductance is the mho, or ohm spelled backwards: 1 siemen=1 mho).

Make a quick graph of the frequency versus resistance, and a graph of frequency vs conductivity in the space
provided below.

R, resistance, ohms

G, conductance,
mho (=1/R)

cnt, from BASIC Stamp
COUNT command

50K
100K
200K

You'll need to calculate G=1/R, and measure cnt from Program 5.2

Experiment #5: The Liquid Environment

Page 112 • Earth Measurements Student Guide Version 1.2

Observe which graph is more linear.

Why do we have to have to talk about both resistance and conductance, if one is just the inverse of the other?
Get used to it! There is a separate term for the inverse of everything in electronics. In electronics it is more
common to talk about resistance. However, in materials science, chemistry, and environmental
instrumentation, it is more common to hear the term conductance. Maybe that is because in the liquid
medium there are many, many different paths between any two points. The different paths are like many
resistors in parallel, and changes in the liquid medium tend to change those parallel elements. So it is easier
to talk about conductance, where conductances add in parallel. Figure 5.5 shows how resistors are placed in
series and parallel to measure resistance (R) and conductance (G).

Figure 5.5: Resistance and
Conductance Formulas

Resistance R, and conductance G, of series and
parallel resistors (conductance). The formula
for parallel resistors is easier in terms of
conductance.

Put the single 100K resistor back in the circuit. In your Program 5.3, try changing the duration parameter
from 1000 milliseconds, to 500 milliseconds, or to 2000 milliseconds. Observe that the reading changes by a
factor of close to 2 each way.

Let's put this another way. Just above you wrote down a value of cnt, the value that came out when a 100K
resistor and a 0.1µF capacitor were in the circuit, and the duration parameter was equal to 1000 in the count
command. What duration would you have to put in the count command in order to make the reading come
out at 100 instead of at 75 (or your reading)? Well, you just have to make the duration proportionately
longer. A longer duration gives you a higher count, right? So calculate:

duration = 1000 * (100/75) = 1333, but you use your own reading:

duration = 1000 * (100/) =_______
 ^^^^ put your reading here

That is your duration calibration constant. You will need later.

Put that new duration value for the count command in your program in place of the 1000. Now when you run
the program with 10-5 siemens (100K) in the circuit, it should display 100 on the screen instead of the original
value.

Experiment #5: The Liquid Environment

Earth Measurements Student Guide Version 1.2 • Page 113

The point of this is that the duration parameter in the count command can be used to scale the result, so that
it appears directly in siemens. We want you to think quantitatively!

Now let's change the debug command so that it shows the units. And while we're at it we might as well
calculate the resistance in ohms and display that too.

' Earth Measurements program 5.3b
' Calibration of the 555 oscillator
cnt var word ' a word variable for count
R var word ' a word variable for resistance
high 9 ' turn on the 555 oscillation
loop:
 count 10,1333,cnt ' count for about one second
 '^^^^------------- You use your own constant here!!!
 R = 50000/cnt*2 ' calculate resistance R=1/G
 debug dec cnt,"E-7",tab,dec R,"00",cr ' values
goto loop

The display should now show 100E-7 (for 100*10-7 siemens), and in
the second column it should show 100000 (for ohms). Verify the
calibration by putting the extra 100K in parallel to get 50K back.
The display should show 200E-7 siemens and 50000 ohms. Notice
that the resistance reading appends two zeros to the value of R,
to make it come out in ohms.

Theory behind using a 555 timer to
measure conductivity?

There are many references that talk about
how the 555 timer circuit works, and how to
apply it, even whole books on nothing but the
555. The important point for measuring
conductivity is that the current through the
resistor in this circuit goes back and forth,
first one direction and then the other
direction, equal and opposite. As we
discussed above, that is what we are looking
for in a probe to put in the liquid medium.
There is a balance of current flow in each
direction, to forestall corrosion, plating, and
polarization. The theory for the 555 is very
similar to the theory for RCtime, but we don't
want to get into it here. The equation for the
output frequency is approximately: f =
3/4*R*C. With R=100000 Ohm and C=0.1µf,
that comes out to 75 Hertz.

Experiment #5: The Liquid Environment

Page 114 • Earth Measurements Student Guide Version 1.2

Conductance in Water

Now it is time to dive in. You will need a cup full of water, and keep a spoon and a couple of pinches of table
salt handy. Replace the 100K resistor with the conductivity sensor. Leave the duration calibration factor at
the value you calculated for your setup. Figure 5.6 shows how to connect the probe to the 555 timer on your
Board of Education.

Figure 5.6: Conductivity Sensor

Replace the 100K resistor with the conductivity
sensor.

With the conductivity sensor in the circuit, run Program 5.3b again. You should get a reading in siemens and
in ohms when you put your fingers across the probe. Try wetting your fingers to see what happens to the
reading. How do you explain the result in terms of conductances?

Without touching the probe, you should be able to touch the probe to the leads of the 100K resistor, to
confirm that the meter still reads correctly. It should read 100E-7 siemens, 100K.

Put the sensor at 1 cm depth at the center of the cup in tap water and record the reading. Then do it again at
3, 2 and 1 cm depth. Read the conductance from the PC screen. You will have to figure out how to determine
the depth in the water. Maybe you can put marks on the side of the cup, or on the sensor itself.

Distilled or Tap Water, Conductance versus Depth
Water level Conductance
1 cm
2 cm
3 cm
4 cm

Keeping the sensor at one constant depth, move it over until it is near the side of the cup. What happens to
the reading, and can you explain why in terms of conductances in parallel?

Move the sensor back to the center of the cup. Note the reading, and then bring a metal object such as the
back of a metal spoon up near the sensor probe. How does that affect the reading, and why is it different
from bringing the probe near the side of the cup?

Experiment #5: The Liquid Environment

Earth Measurements Student Guide Version 1.2 • Page 115

Dissolve a pinch of table salt in the water in the cup. First just drop in the salt crystals, look at the reading, and
then stir and look at the reading again. Write down some readings as you set the probe to different depths:

Pinch of Salt Dissolved in Water, Conductance versus Depth
Water level Conductance
1 cm
2 cm
3 cm
4 cm

Conductivity is often used to determine the salinity of water (how much salt it contains per unit volume), or
more generally, how much mineral content is present. If you used tap water, you might try the experiment
again using distilled water. By holding the depth constant, you could use this probe to measure salinity, which
is closely related, through a rather complicated formula, to conductivity.

Note that in each case the conductance is proportional to depth, either in the tap water, or in the salt water.
You can use this device to measure the depth of water.

However, the two measurements are confounded. To use the device to measure depth, you have to be sure
that the amount of salt in the water is going to be constant, or you have to acquire a separate measurement
of conductivity in order to compensate. On the other hand, in order to measure conductance, you have to be
careful to keep the sensor at a constant depth.

Design of professional instruments is largely concerned with overcoming or compensating for the effects of
confounding variables. For conductivity measurements, great care is taken to confine the solution to a fixed
volume, and to use stable electrode materials, and to monitor the temperature at the point of measurement.
Professional water depth meters are seldom based on the conductance principle because of these difficulties.

The conductivity of water in the natural environment spans many orders of magnitude. Conductivity is
measured in units of Siemens per centimeter. Ocean water may have a conductivity of 50000 Siemens per cm,
whereas pure distilled water may have a conductivity of microsiemens per cm.

Experiment #5: The Liquid Environment

Page 116 • Earth Measurements Student Guide Version 1.2

Figure 5.7: Conductivity Measurement

Conductivity is measured, in theory, with a block
of material, 1 centimeter on a side. Electrodes
are fastened to two opposite faces of the block,
and the conductance is measured. Since the
sample block is one cm long, the conductivity is
in units of siemens per cm. Conductivity
measurements are reported as if they were
made in this setup, but the actual measuring
setup is a lot more complicated!

To calibrate a conductivity instrument, you would need to have a
standard salt solution, that lets you make the leap from conductance
(measured by your Board of Education across its particular sensor)
to conductivity (a property of the water being measured,
independent of peculiarities of the measuring instrument). You have
to find a constant, called the "cell constant" or the "instrument
constant" that accounts for the actual geometry of the probe you
are using. It is a constant of proportionality. We leave the calibration
to the exercises that follow this experiment.

The difference between conductance
and conductivity?

Conductivity is a property of materials.
Materials that conduct electricity well, like
metals, have a high conductivity, while
insulators have low conductivity. If you
take a thin wire one meter long, it will
have a certain resistance from end to end,
and its conductance will be simply one
over the resistance. A thicker wire made
of the same material and of the same
length will have a lower resistance and a
higher conductance. The conductivity of
the wire is the same in both cases. It is a
property of the material

Experiment #5: The Liquid Environment

Earth Measurements Student Guide Version 1.2 • Page 117

Data Logging Continued: Drying of Soil

In the natural world, the phenomenon of evaporation is very important. Water evaporates from the soil and
water is also lost in the transpiration of plants. The rate of evaporation and other mechanisms of water loss
depends on the solar intensity, the wind speed, the temperature, the humidity and the ground cover. You can
use your Board of Education data logger to study evaporation. On a practical basis, you can use your logger to
tell you when to water your houseplants or your garden!

Modify Program 4.4 as shown below. This adds conductivity to the mix. Now you will be able to store 6
readings in memory and read them out later. The total number of bytes available for logging is 18. With 3 per
record, that means we are limited to 6 records total.

' Earth Measurements program 5.4
' temperature, light & conductivity logging in RAM
kal con 15068 ' calibration constant for AD592 temperature.
lical con 647 ' calibration constant for photodiode
condcal con 1333 ' ❒ calibration constant for conductance.
 ' Use Your Own Calibration Constants!!
 ' for temperature, light, and conductance.
interval con 10 ' ❒ get data once per ten seconds
 ' you can choose whatever interval you need.

log var byte(18) ' 18 bytes reserved for the log file.
rct var word ' variable for RCtime
light var word ' variable light intensity
cnt var rct ' ❒ variable for conductivity ALIAS of rct
TC var word ' for degrees Celsius from AD592
n var byte ' counter for the pushbutton
ptr var byte ' pointer to next entry in data log file

outs=%0000000001000000 ' ❒ now put in the outs and dirs statements.
 'fedcba9876543210
dirs=%1111101111111101 ' ❒ all are low outputs, except:
 ' P6 is high output to discharge C for photodiode
 ' ❒ P5 is low output to discharge C for AD592
 ' P1 is input for pushbutton
 ' ❒ P10 is input for conductivity (555)
 ' ❒ P9 is control of 555 conductivity ON-OFF
 ' ❒ P0 is output for piezo buzzer

debug cls,"ready to log data!",cr
freqout 0,200,2550
freqout 0,400,3400

Experiment #5: The Liquid Environment

Page 118 • Earth Measurements Student Guide Version 1.2

debug "degC",tab,"lux",tab,"siemens",cr ' ❒ display units

mainloop: ' ❒
 n=0 ' ❒ initialize the time counter
ml1: ' ❒ loop here until button or time
 pause 1000 ' ❒ one second pacing
 if n=interval and ptr<17 then getdata ' ❒ get data at intervals
 n=n+1 ' ❒ count time
 if in1=1 then ml1 ' ❒ can press button to get data too.
 freqout 0,5,3400 ' ❒ tick for button down
 n=0 ' ❒ zero the counter for button down timer
clik1: '
 pause 100 ' time the button in 0.1 sec increments
 if n>12 then playback ' jump to the playback routine after 1.2 second
 n=n+1 ' increment time
 if in1=0 then clik1 ' loop until the button goes up, or time runs out
getdata: '
 if ptr>17 then honk ' protest if the memory is full
 freqout 0,10,1900 ' sound to show we got here

 RCtime 5,0,rct ' read the temperature probe
 low 5 ' discharge the temperature capacitor
 TC=kal/rct*10+(kal//rct*10/rct)-273 ' calculate Celsius
 log(ptr)=TC ' store temperature
 ptr=ptr+1 ' point to next bin

 RCtime 6,1,rct ' read the photodiode
 high 6 ' discharge the photodiode capacitor
 light=65535/rct*/lical ' calculate lux
 log(ptr)=light/2 max 255 ' store light intensity/2
 ptr=ptr+1 ' point to next bin

 high 9 ' ❒ turn on the 555
 pause 100 ' ❒ delay for it to get up to speed
 count 10,condcal,cnt ' ❒ count the frequency
 ' ❒ <-- use your scale factor!!!
 low 9 ' ❒ turn off the 555
 log(ptr)=cnt ' ❒ store the conductivity
 ptr=ptr+1 ' ❒ point to next bin

 debug dec TC,tab,dec light,tab dec cnt,"E-7",cr ' display data!
goto mainloop

playback: ' ❒ Show all 6 records on debug screen
 freqout 0,50,2550 ' feedback
 freqout 0,100,3400....................'

Experiment #5: The Liquid Environment

Earth Measurements Student Guide Version 1.2 • Page 119

 debug cls,"logged data!",cr ' message on screen
 debug "degC",tab,"Lux",tab,"mho",cr ' ❒ print units of measurement
 for n=0 to 15 step 3 ' ❒ will show 6 records
 TC=log(n) ' get temperature
 light=log(n+1)*2 ' get light
 cnt=log(n+2).........................' ❒ get conductivity
 debug dec TC,tab,dec light,tab,dec cnt,cr ' ❒ display
 next..................................' next record
pb1: ' finished showing
 if in1=0 then pb1 ' wait for the pushbutton to go up
 debug cr,"press RESET to erase data",cr 'print message
 goto mainloop ' back to the top

honk: ' come here if memory is full
 debug cr,"memory full" ' message
 freqout 0,50,3400 ' noise
 freqout 0,200,2000,2100 '
goto mainloop ' back to the top

Notes about this program:

Recall from Experiment #4 that we ran out of variables for that program. We used 18 bytes for the data log
file, and the rest of the available variables for the program. In this program we reuse the variable rct for the
count function for conductivity. We call it cnt, and define it in a variable alias statement at the top of the
program. That means the cnt and rct are really the same physical variable. Changing one of the variables
changes them both, simply because they are physically the same.

There is nothing unusual about this program. It is a straightforward expansion of the one from Experiment
#4. It seems to be getting longer, but each piece has its special part to play.

In this program the outs and dirs statements are modified to take account of the new pins. P10 is an input
for the count operations. P9 is an output to turn the 555 ON and OFF.

The new quantity interval is a constant for the number of seconds between readings (0-65535).

The new program has the code necessary for the conductance probe.

We have to modify the playback routine to play back the conductivity data.

Get this program running, and tested at 10 second intervals. Then put the temperature probe and the wetness
probe in a cup or flower pot full of vermiculite or other potting medium. Put it in the sun, with the light sensor
set for outdoor light. Leave it for 6 hours. Look at your data. Is the time interval appropriate?

Experiment #5: The Liquid Environment

Page 120 • Earth Measurements Student Guide Version 1.2

If you are doing this in a classroom, different groups can do the experiment with variations. For example,
some in the sun, some in the shade, some with ventilation, some not. Use a real potted plant. Experiment -
that's the way you learn how to use microcontrollers in Earth Science!

Alternatively, for a quicker experiment, drape a wet paper towel over the conductivity sensor probe. Follow
and log the conductivity and temperature of the paper towel as it dries out.

Additional Experiments to Try

1) Condensation Sensor

Press a piece of plastic or glass up against the screws on the condensation sensor. When the glass is dry,
it is an insulator, and the conductivity is low. But if you breathe heavily on the glass, it will deposit
condensation that will conduct electricity. Depending on the temperature and humidity, you may have to
chill the surface before condensation will form. This kind of sensor is useful in agriculture, where
condensation forming on leaves of plants can lead to infection by fungus and scab diseases.

2) Humidity Sensor Experiment

 Find a length of heavy thread or light-weight cotton twine. Soak it in salt water (a pinch of salt will do)
and then wrap it around the stainless steel screws of the conductivity probe. Dry it off with a hair dryer
and observe the conductivity while you do this. Then let it come back to atmospheric moisture. If you
breath on it, the conductivity will increase. The NaCl has a transition point at about 75% humidity where
it picks up lots of water. Below 75% humidity, NaCl tends to give up water to the atmosphere. Above 75%
humidity, NaCl tends to absorb moisture from the atmosphere. The conductivity follows along. Different
salts respond at different humidity levels.

3) Surface explorer:

 a) Create a shallow pool of water in a large shallow plastic, glass or paper dish. Carefully put some pieces

of rock salt in the dish. Use the probe to explore the diffusion of salt into your "aquifer". Incursion of salt
water into fresh water marshes and aquifers is a big problem in areas where the fresh water is drawn off
for uses in industry and agriculture. b) Scribble in an area on a piece of paper with heavy pencil or artist's
charcoal. Drag the conductivity probe across the surface, to explore the thickness and resistivity of the
pattern.

Experiment #5: The Liquid Environment

Earth Measurements Student Guide Version 1.2 • Page 121

4) Temperature Dependence of Conductivity

 The conductivity of salt solutions in water depends on the type of salt, and also on temperature. Dissolve

some table salt in water, and log both temperature and conductance as you heat the water. Remember
that the sensor has to be immersed at a constant depth. Graph the result of your experiment. Try the
same experiment with a different salt (say KOH), or with acids (Vinegar). You will find that each solution
has its own characteristic temperature dependence. Commercial conductivity sensors always measure
both temperature and conductivity. From temperature and conductivity, they can then calculate the
concentration of the salt. Can you figure out how to do that calculation? Chemistry reference books, like
the Handbook of Chemistry and Physics, contain this kind of information. Look and see. You have to know
in advance what type of salt or salt mixture is in solution.

5) Quantitative Calibration of the Conductivity Probe, Using a Standard Solution.

 In order to calibrate this sensor to measure conductivity (property of the material) instead of

conductance (an electrical quantity), you would have to prepare a standard solution that has a known
conductivity. Such standard solutions can be purchased, or you can make them yourself in the classroom,
by adding a known amount of potassium chloride (KCl) to a known amount of water. Tables of
conductivity are found in chemistry or in water quality handbooks, or in references such as the Handbook
of Chemistry and Physics. Once you have the standard solution, you measure its conductance with your
Board of Education instrument. That gives you a constant of proportionality between your conductance
reading and the conductivity of the solution. This constant is called the instrument constant. It has to do
with the geometry of the electrodes and the cup. You also measure the temperature of the solution.
With this information in hand you can proceed to measure the conductivity (and the concentration) of
unknown water samples.

6) Ground Loop Error

 Connect a long piece of hookup wire to Vss (zero volts) on the Board of Education. Drop the free bare end

of the wire into the cup where the conductance probe is operating and showing its readings on screen.
You will see that the reading changes. This is due to the extra ground path provided by the wire. This kind
of situation is common in large instrumentation systems, say, in a fish farm or in an industrial plant. But it
is sometimes hard to track down where the interaction is coming from. There can be unplanned
connections between points in the system. To avoid this problem, engineers often design "isolated"
sensors, which means that signals are passed across an optical link or other barrier of that sort, so that
there will be no direct electrical connection. This is also extremely important in situations where safety
and shock hazard are an issue, such as in medical instrumentation.

Experiment #5: The Liquid Environment

Page 122 • Earth Measurements Student Guide Version 1.2

7) Environmental Explorer

 Measure the conductivity of some samples of water. Try distilled water, tap water, ocean water. How

much salt would you have to add to one liter of distilled water to make it as salty as the ocean?

Experiment #5: The Liquid Environment

Earth Measurements Student Guide Version 1.2 • Page 123

Challenge!

1) Write a program that counts the number of times you press the pushbutton in 5 seconds. The BASIC

Stamp should sound a "start" tone, and then count the number of button presses, play a "finish" tone,
display the result on screen, pause for 3 seconds, and then do it again.

2) Install a red and a green led on the Board of Education, so that P7 and P8 can turn them on or off.

Modify the program that measures temperature, light and conductivity as follows. It should turn on the
green LED if the measurements are all within normal operating range (you decide what that range is). If
they go outside the normal range, the green LED should turn off, and the red LED should turn on. If they
then return to normal, the green LED should come back on, but the red light should stay on to show that
there has been a "problem". If the readings get way out of range, turn on the "alarm siren".

3) With the circuit of figure 5.4, the frequency of oscillation is proportional to 1/RC, where R is the

resistance, and C is the capacitance. In your kit, you have 2 of the 100K resistors and 2 of the 0.1µF
capacitors. You can put resistors in series to make 200K, and in parallel to make 50K. You can put two of
the capacitors in series to make 0.05µF, and in parallel to make 0.2µF. Write a program to show you the
frequency in hertz for each value of resistance and capacitance in the following table.

table entries are frequencies
from 555 timer

0.05 uF 0.1 uF 0.2 uF

50K-20E-6 mho
100K-10E-6 mho
200K-5E-6 mho

This will test your understanding of how the white block is connected underneath!

Does it seem to be true that frequency=constant/RC? Graph frequency vs conductivity. Graph frequency vs
resistance. Which is linear?

Experiment #5: The Liquid Environment

Page 124 • Earth Measurements Student Guide Version 1.2

Experiment #6: Measurement and Control

Earth Measurements Student Guide Version 1.2 • Page 125

Experiment #6:
Measurement and
Control

The theme of the Measurement and Control experiment is
that microcontroller can do both measurement and control,
closing the feedback loop. The activities associated with this
experiment consist of: (1) Feedback to control of the level of
water in a cup using a battery powered pump, and
conductivity as the level detector. (Do not get water on your

Board of Education!--Electronics in the real world!); and (2) Simultaneous measurement and control of 4
variables. The materials used in this experiment will require you to improvise with items you can find around
the classroom.

Introduction

Measurement and data logging are often combined with control. Not satisfied to simply sit there and watch,
the Board of Education reaches out and does something that affects the conditions in the outside world. It
might open a door in response to an approaching pedestrian, as you did in "What's a Microcontroller"
Experiment #4. Or it might function as a thermostat, to control a heater or a fan when the temperature gets
too hot or too cold. In industry, on the farm, in public works, in scientific research, all manner of processes
need to be controlled and regulated based on measurements, to achieve a desired result. Some instruments
may themselves require internal measurement and control. Imagine what goes on in a machine like the
automated Mars rover, where robot arms and chemistry laboratories and instruments of all kinds have to
function as an integrated measurement and control system far from human interaction. Many modern
instruments, like DNA analyzers or automated water quality analyzers, are marvels of measurement and
control.

In this experiment, you will turn on a pump to regulate the level of water level in a cup, or to keep up the
moisture in the soil around a potted plant. You might think of these as smaller versions of a fish farm, or a
water treatment plant, or a full-scale irrigation system for a vineyard.

Feedback is important here. It is possible to have control without feedback. If you pour one cup of water on
your potted plant every day, regardless of the condition of the plant, there is no feedback in that. You are in
danger of over-watering the plant, and wasting water and fertilizer besides. It might not matter with one
small plant in well-drained soil, but imagine a dry-land farm, or a large greenhouse operation. If the condition
of the soil or the plant is first measured, and from that decision is made of whether or not to irrigate, that is
feedback at work. The result can be a happier plant as well as more efficient use of resources. This is
especially important in places and times where water is scarce. Feedback can take on many forms, and involve
a combination of measurements in the control decisions.

Experiment #6: Measurement and Control

Page 126 • Earth Measurements Student Guide Version 1.2

The final project in this Earth Measurements series will be a data logger that combines the two temperature
sensors (the DS1620 and the AD592), the light sensor, the conductivity sensor, and the pump control in one
program. The data will be stored in the BASIC Stamp's EEPROM memory. This data logger can be used for a
variety of experiments you may think of to undertake as class projects or on your own initiative. Thank you
for sticking with it! Do good for the earth!

Parts
Required

The following parts are required for this experiment:

(1) ZTX1049A NPN "superbeta" transistor (marked ZTX 104 9A)
(1) 100 ohm resistor
(1) 10 ohm, 1 watt resistor (brown-black-black) heavier construction (this resistor is manufactured out of

special temperature resistant materials)
(1) pump (Edmund Scientific) with 1/4" tubing
(2) 12" red and black wires to extend from the pump's smaller wires
(1) cup and tray, cup prepared with a 1/4" hole punched or drilled near the bottom hookup wire (cup and

tray not included in the Earth Measurements Parts Kit)

Build it!

Figure 6.1 shows the preparation of the pump. The lead wires from the pump are fragile. The pump cannot
tolerate water inside the motor. We suggest that you take a piece of duct tape or wide plastic tape and wrap
it around the plastic pump housing to secure the wires. Pinch the tape together at the top to protect the
pump from splashed water. Extra heavy wires are provided to extend the fine wires.

Experiment #6: Measurement and Control

Earth Measurements Student Guide Version 1.2 • Page 127

Figure 6.1: Pump Preparation
Wrap a piece of tape around the top of the
pump to protect the wires and prevent water
from getting into the pump. Join and tape the
pump's wires with the long red and black wires
that are included in the kit.

On-Off Control of Pump

Add the transistor circuit to the Board of Education, and connect the pump as follows so that the PBASIC
program will be able to turn it on and off. The diagram in Figure 6.2 shows the conductivity sensor in place on
top of the cup, but for the time being put the sensor to one side. We will return to it in a moment.

Figure 6.2: Pump Control
with Transistor
• transistor collector to

Vdd node
• transistor base

through a 100 ohm
resistor to P3

• transistor emitter to
the 10 ohm , 1 watt
resistor

• 10 ohm 1 watt resistor
the red pump wire

• black pump wire to Vss

The three pins on the transistor are the collector, the base and the emitter, as shown above. The orientation
is keyed to the printing on one face of the transistor. Put the pump in shallow water, enough to cover the
impeller unit 2 cm deep. A complete schematic for this project is shown in Figure 6.3.

Experiment #6: Measurement and Control

Page 128 • Earth Measurements Student Guide Version 1.2

Figure 6.3: Pump
Control with
Transistor Schematic

Experiment #6: Measurement and Control

Earth Measurements Student Guide Version 1.2 • Page 129

Enter the following program:

' Earth Measurements program 6.1
' pump tester
loop:
 high 3
 pause 5000
 low 3
 pause 2000
 goto loop

The pump should turn on for 5 seconds and off for 2 seconds, and repeat. By the way, do not use a 9-volt
battery for this-the pump draws too much power. Use the 300 mA 9 volt power supply that came with the
Board of Education.

Troubleshooting. If it works, great! If not, here are a couple of suggestions.

• Kick the pump. Not literally. But sometimes the impeller becomes stuck if it has dryed out in a way
that leaves mineral deposits inside. Look at the bottom of the pump, and you will see a hole and the
vanes of the impeller inside. You can loosen them with the tip of a paper clip. Also, look to be sure
that the tube that emerges from the side of the pump housing is not pushed in too far. If it is pushed
into far it can prevent the impeller from turning.

• Use a wire to jump directly from the collector to the emitter of the transistor on the Board of

Education. That bypasses the program control of the pump. If the pump still does not operate, then
disconnect the pump from the Board of Education and touch the pump wires to a 1.5 volt flashlight
battery. If that doesn't do it, the pump itself may be defective, or the wires that connect to the pump
may be broken.

• If the pump does work, but the circuit does not respond to the program, recheck the wiring. Be sure

that the transistor is oriented correctly in the circuit and that the base is connected to P3. The
collector should be in the +5 volt node next to the piezo buzzer. And one end of the 10 ohm resistor
should be in the same row as the emitter of the transistor.

• The wiring is getting tight. You have to check the connections carefully to be sure there is not a short

circuit with one of the other parts on the Board of Education.

Experiment #6: Measurement and Control

Page 130 • Earth Measurements Student Guide Version 1.2

Figure 6.4 shows an impeller, the rotating disk within the pump.

Figure 6.4: Pump Impeller

The motor in the pump draws about 300 milliamps of current at 3 volts. That
is lots more than the pins of the BASIC Stamp are capable of supplying. It is
necessary to use a transistor to amplify the current available from the BASIC
Stamp. There are several ways to use transistors. The one here is called an

"emitter follower". The voltage at the emitter of the transistor, "follows" the voltage at the base. When P3 is
low, at zero volts, then the emitter of the transistor is also at zero volts and the motor is off. But when P3
goes high, to +5 volts, then the emitter follows along (4.4 volts when P3 is at +5 volts) and the pump is turned
on. The 300 milliamps needed by the pump comes through the transistor from the power supply, not from pin
P3. Only a tiny current of about 0.3 milliamps is necessary to turn on the much larger 300 milliamp current.
The transistor is acting as an amplifier for current. The 10 ohm, 1 watt resistor limits the voltage applied to
the pump. The pump is only rated to operate at up to 3 volts. Figure 6.5 shows the transistor action

Impeller:
Inside the plastic housing at
the bottom of the motor is a
rapidly rotating disk with radial
vanes. The vanes pull in water
at the center through a hole
you can see in the bottom of
the housing, and throw the
water out along the edge and
force it to flow through the
exit tube. The water is pulled
through by the action of
centrifugal force. The spinning
disk with vanes is called an
impeller.

Experiment #6: Measurement and Control

Earth Measurements Student Guide Version 1.2 • Page 131

Figure 6.5: Transistor
Action
e = emitter
b = base
c = collector

Now modify the program as follows so that the pump is ON only when you hold the pushbutton down.

' Earth Measurements program 6.1
' pump tester
output 3
loop:
 out3=~in1
goto loop

Maybe you were expecting a longer program? Look at the statement, out3=~in1. What that says is, "make
the output the opposite of the state of the pushbutton input." The symbol "~" means "not". If in1 is zero,
pushbutton down, then the state of the pump will become 1, ON. If in1 is equal to 1, pushbutton up, then the
state of the pump will become 0, OFF.

Try it. Mark a level on the side of the cup, and hold down the button until the water level reaches your mark.
Then release the button. Try to press and release the button so that you hold the water level close to the
mark. You are now part of a feedback loop. And soon you are going to be replaced by automation. The
conductivity sensor is going to do the looking and turning the pump on and off. I think this is one job you
would just as soon have automated.

Experiment #6: Measurement and Control

Page 132 • Earth Measurements Student Guide Version 1.2

A further word about the program. Another way to write it would be to use IF-THEN statements, something
like this:

' Earth Measurements program 6.1b
' pump tester
loop:
 if in1=0 then pumpOn
 if in1=1 then pumpOff
goto loop
pumpOn:
 high 3
goto loop
pumpOff:
 low 3
goto loop

That is a fine way to write the program. It shows very well what is going on. If the pushbutton is down, the
pump turns ON. If the pushbutton is up, the pump turns OFF. The program has to take one or the other course
of action, because in1 has to be either 0 or 1. Try it.

The program could alternatively be written using the branch instruction:

' Earth Measurements program 6.1c
' pump tester
loop:
 branch in1,[pumpOn, pumpOff]
pumpOn:
 high 3
goto loop
pumpOff:
 low 3
goto loop

See the BASIC Stamp Manual Version 1.9 (p. 247) for information about the branch command. The program
branches to pumpOn if the pushbutton is down (in1=0) or to pumpOff if the pushbutton is up (in1=1). That too
is a clear way to write the program. It will branch to one or the other, because in1 can only take on the values
0 or 1.

Try the different ways to write the code. It is always good to know that there are different ways of
accomplishing a task. The goal may be to make the code as compact as possible, or to make it run as fast as
possible, or to make the program as easy as possible to follow in documentation.

Experiment #6: Measurement and Control

Earth Measurements Student Guide Version 1.2 • Page 133

Pump Control with Feedback

Arrange the tray and the cup so that the outlet tube from the pump enters the cup through a hole near the
bottom of the cup as shown in Figure 6.2. The hole needs to be 1/4 inch in diameter to hold the tube firmly
without leakage. Put the conductivity sensor in the container, so that the tip of the sensor is above the resting
water level. The objective now is to operate the pump until the water comes up to the level of the probe, and
then to hold the level there, automatically, using the conductivity probe as the level sensor. In the above
exercise you were using your eye as the level sensor and your finger on the pushbutton as part of the
feedback loop.

' Earth Measurements program 6.2
' pump controller
cnt var word
loop:
 high 9 ' turn ON the 555
 count 10,133,cnt ' count pulses
 '^^----------------- ' USE YOUR CONSTANT divided by 10
 low 9 ' turn OFF the 555
 debug dec cnt," umho",cr ' display micromho
 if cnt > 36 then Poff ' level too high, turn pump off
 if cnt < 30 then Pon ' level too low, turn pump on
 goto loop ' do it again
Poff: ' turn pump off
 low 3
 goto loop
Pon: ' turn pump on
 high 3
 goto loop

Use your own calibration constant (divided by 10 here) that you determined in Experiment #5. The calibration
constant makes the reading come out in units of micro-mho (or micro-siemens, µS, in cgs units). What does
that mean? If you take the reading from the debug screen into 106, that will be the resistance in ohms. It is
not so important here to have real units for control of the level, but on general principles we like to remind
you that there are accepted units of measurement for conductance.

The water should rise up to the level of the sensor, and then the pump should turn off. The water level drops
until it no longer hits the sensor, and then the pump turns on. Remember, the count is higher as the probe is
deeper in the water.

Observe the action. How often does the pump come on? What is the ratio of the ON time to the OFF time?
This isn't a very efficient system, because the water leaks back out through the pump when the pump is off.

Experiment #6: Measurement and Control

Page 134 • Earth Measurements Student Guide Version 1.2

The critical level chosen for the water, the point where the pump changes from OFF to ON and vice versa, is
called the "set point". There are two set points in this program, one for ON and one for OFF. The pump turns
ON when the level is less than 30, and it turns OFF when the level is greater than 36. Think about what
happens in the program code when the level is between 30 and 36. Neither of the IF statements is true, so the
program goes around the loop without taking any action to change the state of the pump motor. If the motor
was OFF, it stays OFF. If the motor was ON, it stays ON. This gives 8 units of hysteresis. This is a desirable
feature in some kinds of feedback systems. For example, there are some kinds of motors and equipment that
suffer if they are cycled on and off too often. It is better to let the liquid reach the upper set point, and then
let the motor rest until the liquid drop below the lower set point before turning the motor back on again.
That saves wear and tear on mechanical parts. Other times it is a requirement of the system, say, to let a plant
dry out between watering, or to create a surge in the water level in a fountain. This kind of control, where the
two set points are offset like that, is called hysteresis. This program has 7 units of hysteresis, from 30 to 36
inclusive.

The vertical axis is the water level, or the conductance, since higher water level --> higher conductance. The
horizontal axis is the state of the pump, ON or OFF. On the left, the water is low, and the pump is on. On the
right, the water is high, and the pump is off. In operation, the system spends most of its time going around the
square of hysteresis. ON up to the upper set point, then OFF, and falling down to the lower set point.

Figure 6.6: Hysteresis

Experiment with the value of the high and the low set points. Increase the upper set point to make the water
reach a high level on the conductivity sensor, without overflowing the cup. Observe the value of cnt on the
debug screen. Observe how often the pump cycles on and off, when the set points are close together, versus
when they are farther apart.

What will happen to the actual level if the conductivity of the water changes? Try adding a pinch of salt to the
water and see. (This is not a professional level sensor!)

Here is an alternative way to program it that avoids the use of the if. . then statements. This is a matter
of programming style. Try it!

Experiment #6: Measurement and Control

Earth Measurements Student Guide Version 1.2 • Page 135

' Earth Measurements program 6.2b
' pump controller
cnt var word ' variable for count
low 3
loop:
 high 9 ' turn on the 555
 count 10,200,cnt ' count pulses
 low 9 ' turn off the 555
 debug dec cnt,cr
 out3=~(cnt/36 max 1)
 goto loop ' do it again

When the value of the count is less than 36, the set point, then the value of cnt/36 will be zero. Remember,
this in integer math, and the result of cnt/36 is always an integer. When cnt is greater than or equal to 36,
then the value of cnt/36 will be 1 or greater. The additional operation, max 1, limits the value to 1 at most.
There is a "not" operator, "~" in front of the whole expression in parentheses. The result is that when cnt is
less than the set point, out3 is HIGH, and the pump is ON. But when cnt is greater than or equal to the set
point, then out3 is LOW and the pump is OFF. Note that this program starts off with a command, low 3, that
turns P3 into a LOW output. Otherwise P3 would be an input.

This program 6.2b does not have any hysteresis. The pump is ON for all values of the count less than 36, and
OFF for all values greater than or equal to 36. Here is a statement that adds a little bit of hysteresis:

 out3=~(cnt/(30+(out3*6)) max 1)

The pump stays ON until the water level reaches 36 or above, but once the pump is OFF, it does not turn back
ON until the level falls back below 30. The hysteresis is added here by mixing the state of the output into the
right-hand side of the formula. The BASIC Stamp can do that. Out3 is a variable like any other variable, and
your program can either read or set its value. Think this through. It is tricky and not as transparent as doing it
with if and goto. But this way of coding it is more compact. If and goto clutter up a program in their own
way. It is an advanced technique for your bag of programming tricks!

Memory in the BASIC Stamp, Revisited

The data logger we developed in Experiments #4 and 5 had only 18 bytes of RAM memory. We could only have
9 records with 2 fields in Experiment #4, or 6 records with 3 fields in Experiment #5. Not only that, the data all
disappeared if we turned off the power or pressed the reset button; is gone for good! This would be a serious
shortcoming in a data logger for use in environmental science. A scientist or an engineer may want to collect

Experiment #6: Measurement and Control

Page 136 • Earth Measurements Student Guide Version 1.2

much more data than that, and he or she most likely won't want the data to disappear prematurely. It needs
to be retrieved and stored safely in an archive file before it is erased from the logger.

So we are going to switch over and store the data in the EEPROM memory instead of in the RAM. Recall from
Experiment #2 that there are 2048 bytes of EEPROM on the BASIC Stamp. We will reserve 250 bytes of that
for our data log. That is lots more than we had available in RAM. We can reserve more than that, too, if need
be for future experiments. Best of all, our data in EEPROM will survive resets and power outages.

The way we go about storing data is different in RAM that it will be in EEPROM. Here is the way it looks in
RAM:

Figure 6.7: RAM log

There is an array of 18 byte-size variables, from log(0) to log(17). We put data into bins with statement of the
form, log(i)=TC, and we retrieve data from the bins with statements of the form, TC=log(i). The value in
parentheses is a variable, a pointer, as was done in Programs 4.4 and 5.4.

Here is the difference with EEPROM. Recall Experiment #2:

Figure 6.8:
EEPROM
log

To write a temperature value into location 1 in the EEPROM, we use the form

write 1,TC

and to retrieve data from location 11 in EEPROM, we use the form:

read 11,TC

TC is a byte-size quantity. As in RAM, we can use a pointer variable to reference the byte to write or to read.
The following program demonstrates a couple of ways to reserve space in the EEPROM.

Experiment #6: Measurement and Control

Earth Measurements Student Guide Version 1.2 • Page 137

Try it:

' Earth Measurements program 6.3
' illustration of eeprom allocation
pad data (32) ' reserve 32 bytes, undefined
log data 1(60) ' reserve 60 bytes, preset all = 1
hey data 72,101,121,33,32,66,83,50 ' reserve 8 bytes specified
ptr var byte ' byte for pointer
x var byte ' byte for eeprom data
for ptr=0 to 7 ' point to 8 locations in a row
 read ptr+hey,x ' read data from location
 debug dec x, " " ' show it, with a space
next
debug cr

When you run this, (or press reset on the Board of Education), you should see the 8 numbers from the "hey"
data appear on the debug screen.

This program sets aside space in EEPROM for data, 100 bytes of it to be exact. There are 32 bytes of undefined
data (not preset to any particular value) starting at address zero, then 60 bytes of defined data (all preset to
one) starting at address 32, and 8 bytes of numerical data at locations 92 through 99. Each of these 100
EEPROM locations contains an 8 bit data pattern. The 8 bit pattern could represent a number such as a
temperature or a light level, or it could represent a letter to print on screen, or it could be a pattern of Morse
code, or any other thing you could imagine to fit into a pattern of digital bits.

The for. . next loop reads and prints out the 8 numbers starting at EEPROM address "hey" . We could have
written it like this:

for ptr=92 to 99 ' <-- explicit values for the pointer
 read ptr,x ' <-- read from those locations
' and so on

But it is best to let the BASIC Stamp software keep track of the details of which number goes with which
name. That makes future changes easier.

Now make a simple change to the debug statement, as follows:

for ptr=0 to 7
 read ptr+hey,x
 debug x ' ❒ <-- change this, leave out dec and ," "
' and so on

Experiment #6: Measurement and Control

Page 138 • Earth Measurements Student Guide Version 1.2

Now when you run the program, the BASIC Stamp reads the same 8 bytes from the EEPROM memory. But the
debug statement sends them as is as single bytes to the PC screen. The screen interprets them as printable
characters. For example "72" sent as a single byte is the ASCII code for the letter "H" (ASCII-American
Standard Code for Information Interchange). With the dec modifier, the debug statement takes the single
byte with numerical value 72, and sends it to the screen as two ASCII codes, first the one for "7" and then the
one for "2". If you substitute one of the other numerical modifiers, you can see the numbers in binary
(72=%1001000) or in hex (72=$48):

debug x ' show as ascii text
debug dec x," " ' show decimal, with a space
debug bin x," " ' show binary, with a space
debug hex x," " ' show hex, with a space

Try it! The point is that the binary pattern that is stored in the EEPROM is the same in each case. It is only the
interpretation by the debug command and by the PC screen that is different. Please bear with us if you
already know this. This is a confusing point for many students. We are going to use the EEPROM to store
numerical data, but we usually use debug with the decimal modifier.

We will store each point of data as one byte in the EEPROM. Each byte can represent a number from 0 to 255
decimal. Our logger will not store larger values. It is possible to do so, but it would take two EEPROM locations
per point.

The declarations:

pad data (32) ' reserve 32 bytes, undefined
log data 1(60) ' reserve 64 bytes, preset all =1

are two other ways to reserve space for data in the EEPROM. The second form initializes the 60 bytes to have
a value of 1, while the first form simply sets aside the bytes without specifying a value to store there.

Now modify the central part of Program 6.3 once more as follows, to print out the decimal value of all 100
locations in EEPROM:

for ptr=0 to 99 ' ❒ read in all 100 bytes of data
 read ptr+pad,x ' ❒ starting at pad (pad=0)
 debug dec x," " ' ❒ show data as decimal value
next

Now you should see 32 bytes of garbage, followed by 64 zeros, followed by the 8 bytes that have special
meaning as ASCII text. Why do we say "garbage"? It is because the 32 bytes you see first are simply stuff that
was left over in your BASIC Stamp from earlier programs and experiments. The program reserves space, but
it does not send any new data to the BASIC Stamp to put in those locations.

Experiment #6: Measurement and Control

Earth Measurements Student Guide Version 1.2 • Page 139

The BASIC Stamp II editor has a very useful feature that lets you look directly at the allocation of the memory.
It is an invaluable tool for program development. Close the debug window if it is active on your screen. If you
are using the DOS editor, STAMP2.EXE, press ALT-M. If you are using the Windows version, STAMP2W.EXE,
press CTRL-M (or choose memory map from the menu or from the tool bar). What you see will depend on
which version of the editor you are using, but in both cases there are three views. In the Windows version, all
three views appear on one screen, and they are labeled "RAM Map", "Condensed EEPROM Map", and "Detailed
EEPROM Map". In the DOS version, the three views appear on three different screens, and you cycle through
the views by pressing the space bar.

Figure 6.9: Memory Map.
The left portion of the map is the EEPROM, your
BASIC Stamp source code and extra EEPROM
space. The right side of the map is variable
storage, RAM. The lower right hand corner of the
memory map defines the type of data by color
that you are storing in EEPROM and RAM.

Look at the "RAM Map". It is the first screen you see in the DOS version, or, in the Windows version, it is the
view at the upper right side. Recall that RAM is Random Access Memory that is located inside the PIC
microcontroller chip, and stores the program variables. There 32 bytes, (16 words, 256 bits) altogether. The
first 6 bytes (3 words) are dedicated to the i/o pins of the BASIC Stamp. These variables bear the pre-
assigned names, ins, outs and dirs. On the "RAM map" these pin variables appear in red. That leaves 13 words,
26 bytes, for the variables in our program. Program 6.3 has only two variables, both of them defined as bytes.
The "RAM map" shows them in light blue color right below the pin variables. The rest of the RAM memory is
not allocated in this program, and is shown in white (gray in Windows). Be aware that the "RAM Map" does
not show you the actual values of the variables--that only happens when you run the program.

Experiment #6: Measurement and Control

Page 140 • Earth Measurements Student Guide Version 1.2

Now look at the "Condensed EEPROM Map". It is in the lower middle of the Windows version screen, but in the
DOS version, you have to press the space bar once to bring up this view. Recall that the EEPROM memory is
located in a separate chip, apart from the PIC microprocessor. There are 2048 bytes of EEPROM. At the top of
the schema is the data in shades of blue, and at the bottom is the program code in red. Between the program
and the data is empty space that will fill up as we write longer programs and reserve more space for data.
You might ask what will happen if the two areas collide in the middle? That's easy, you will get an "out of
memory" error message. Notice that the data area has two different shadings. The first 32 bytes in blue are
the "undefined data", or "empty data" declared with the statement:

pad data (32)

When you load (run) your program into the BASIC Stamp, the loading process does not touch those bytes, and
that was the "garbage" you saw when you last ran Program 6.3. In contrast, the following statements create
what is called "defined data".

log data 1(60)
hey data 72,101,121,33,32,66,83,50

When you run your program into the BASIC Stamp, specific bytes are loaded into the EEPROM along with the
program itself.

Now look at the "Detailed EEPROM Map". If you are using the DOS version, press the space bar again to get to
this view. This view shows the contents of the EEPROM byte by byte. You first see 32 dashes (DOS version) or
32 dark blue zeros (Windows version), followed by 60 zeros, followed by the 8 specific bytes. The display
shows HEX numbers (from 00 to FF). In the DOS version, you can see the ASCII text (when meaningful!) to the
right of the map, and in the Windows version, you can press ALT-A to view the data as ASCII text.

Note that the BASIC Stamp editor does not show you the "garbage". You only get to see that when you really
run the program on the BASIC Stamp. You see, the BASIC Stamp gives you a lot of options on how to use the
EEPROM resources.

Now use the scroll bar, or the arrow keys (ALT-arrow in the Windows version) to move down to the bottom of
the "Detailed EEPROM Map". When you are looking at the bottom of the memory map, you will see the actual
bytes of the program itself as it is stored in the EEPROM. Program 6.3 occupies about 34 bytes of memory.
The program code is stored in a very compressed form, so don't look for an easy correspondence between
the bytes in the EEPROM and the text of the program.

Experiment #6: Measurement and Control

Earth Measurements Student Guide Version 1.2 • Page 141

Press ESCAPE on the keyboard (DOS) or close the window (ALT-C Windows), to get back to the editor screen.
The purpose of this digression is to help you think about the organization of the memory on the BASIC Stamp,
and also to illustrate a very useful feature of the BASIC Stamp programming software.

Data Logger

Now it's time to get down to business. There are several issues that need to be addressed to make a working
data logger. Rather than deal with them piecemeal, here altogether now are the design objectives.

• The logger will also function as a pump controller, to keep the water level up in the cup. So the
logger has to do both measurement and control.

• Clicking the pushbutton once will log 5 bytes in EEPROM as follows below.

ordinal
1,2,3,. . . 50

temperature
from DS1620

temperature
from AD592

light from
photodiode

conductance
from probe

 more

• There will also be a capability for timed data logging, so the logger can take readings at a

programmed interval from seconds to hours. For example, with hourly logging, and 50 records total,
the unit could hold two days worth of data. The interval is set at the time of programming the BASIC
Stamp.

• Since we are going to set aside 250 bytes for the data log, and since each record has five fields, there

will be room for 50 records in the file. The log file can be made smaller or larger as needed for
different projects.

• The program can find its place in the data file even after a RESET or a power outage. This is done by

scanning the data file, where the next free data location will be tagged by a zero in the ordinal
number field.

• Press and hold down the pushbutton for 1.2 seconds to get into the routine to play back all the

recorded data. This is like the RAM data logger in Experiments #4 and 5. After playback of the data,
the logger can resume taking additional data where it left off.

• To erase the data and start over, press and hold down the pushbutton during RESET.

Experiment #6: Measurement and Control

Page 142 • Earth Measurements Student Guide Version 1.2

• Annunciate all the user interaction on the piezo transducer. Show data on the debug screen. Morse
Code is optional.

The starting point for this program is Program 3.4, which you should have saved on disk. This program also
uses code from Program 5.4. If you have the Windows version of the BASIC Stamp software, then you can save
yourself a little typing by cutting and pasting. The program is getting long, but we want to emphasize that it is
built out of lots of pieces that you already know. This program just brings them together in one place. The
objective here is to give you a program you can use for further experiments in Earth Measurements.

Enter this program and get it running. One strategy is to simply type in all the changes, and then deal with any
typos and errors later. That isn't a bad strategy where you have reason to believe that the program is
basically okay (and we hope that it is!). Another strategy is to type small segments and test as you go along.
That is usually the best way if you are uncertain about the pieces. First verify your Program 3.4, then add the
additional variables and constants and data declarations, then the light and conductivity sensors, then the
pump control routines, then the routine put data in memory, and then the timed data logging, and finally the
routine to read the data out from memory.

' Earth Measurements program 6.4
' data logger for 2 temperatures, light and conductance
' with simultaneous control of water level

' morse code constants and variables
dit con 50 ' milliseconds for Morse dit
dit2 con 2*dit ' constants related to dit
dah con 3*dit ' ditto
mc var byte ' temporary for Morse pattern
j var nib ' index for digits to send
i var nib ' index for dits and dahs

' general purpose variables
xm var byte ' morse & eeprom input variable
x var byte ' general purpose variable
n var word ' variable for time counter

 ' note: DS1620 preprogrammed for mode 2.
 ' high 13:shiftout 15,14,lsbfirst,[12,2]:low 13

' sensor calibration constants. USE YOUR OWN calibration constants
Kal con 16428 ' for the AD592 in Kelvin with 0.22uF
lical con 647 ' for the photodiode in lux with .01uf
cntcal con 1333/10 ' for conductance in umho with 0.1uf.

Experiment #6: Measurement and Control

Earth Measurements Student Guide Version 1.2 • Page 143

' sensor variables
degC var word ' for Celsius temperature from DS1620
TK var word ' for Kelvin temperature from AD592
TC var word ' Celsius from AD592
rct var word ' for the RC timer.
light var word ' light level from the photodiode
cnt var word ' for the conductance probe
umho var byte ' conductivity
mhomax var byte ' maximum value of conductivity

' logging constants & variables
interval con 600 ' interval for logging in tenths seconds
nflds con 5 ' number of fields per record
nrecs con 50 ' number of records in file
logsiz con nflds*nrecs ' size of the log file in bytes
pad data (16) ' padding to save wear and tear on memory
log data 0(logsiz) ' bytes reserved in eeprom for data log file
ptr var byte ' pointer to data in the log file
 ' routine also uses variable xm

outs=%0000000001000000 ' now specify the initial outs and dirs.
 'fedcba9876543210
dirs=%1111101111111101 ' P0 is output for piezo
 ' P1 is input for pushbutton
 ' P3 low for pump
 ' P5 is low output to discharge C for AD592

 ' P6 is high output to discharge C for photodiode

 ' P9 is control of 555 conductivity ON-OFF
 ' P10 is input for conductivity (555)
 ' P13-15 output for DS1620 SPI
 ' all unused pins are low outputs

top: ' program starts here out of reset or erase

 ptr=-5 ' pointer = -5 in prep for findptr routine
findptr: ' find next free location in eeprom
 ptr=ptr+5 ' point to a record
 read ptr+log,x ' read byte
 if x>0 AND ptr<logsiz then findptr' if x not zero, this is not a free record
 ' also test for full log, ptr=logsiz
 ' pass here when free record is found
 ' ptr points to the next free record

If in1=0 then eraselog ' erase data log if pushbutton down at RESET
debug ? ptr ' show the pointer & the base address

Experiment #6: Measurement and Control

Page 144 • Earth Measurements Student Guide Version 1.2

debug "RESET+button=erase",cr ' user message
freqout 0,20,1900 ' beep to signal that it is running

mainloop: ' main program
 n=0 ' initialize the time counter
clik: ' loop here until button or time
 if n=interval then getdata ' get data at intervals
 gosub pump ' update the pump status
 n=n+1 ' count time
 if in1=1 then clik ' can press button to get data too.
 freqout 0,5,2550 ' tick for button down
 n=0 ' zero the counter for button down timer
clik1: ' gosub pump
 ' time the button in 0.1 sec increments
 if n>12 then playback ' jump to the playback routine after 1.2 second
 n=n+1 ' increment time
 if in1=0 then clik1 ' loop until the button goes up, or time runs out
 ' pass here if button clicked

getdata: ' come here to scan and log data, timed or button
freqout 0,20,3400 ' got here!
low 3 ' turn off pump, unconditional, while scanning
xm=ptr/5+1 ' first put the ordinal record number in memory
gosub writedata ' write it in eeprom!
debug dec xm," " ' print it on screen

DS1620: ' DS1620 temperature sensor code
 high 13 ' select the DS1620
 shiftout 15,14,lsbfirst,[238] ' send the "start conversions" command
 low 13 ' finish the command
 pause 450 ' delay for conversion
 high 13 ' select the DS1620
 shiftout 15,14,lsbfirst,[170] ' send the "get data" command
 shiftin 15,14,lsbpre,[x] ' get the data
 low 13 ' end the command
 degC=x/2 ' convert the data to degrees C
 xm=degC ' morse routine expects data in variable, xm
 gosub writedata ' and write the degC data
 debug dec xm,tab ' show it on debug screen
 'gosub morse ' and send it as morse code (optional)

AD592: ' AD592 temperature sensor code
 rctime 5,0,rct ' get the AD592 count
 low 5 ' pull input low, discharge cap
 TK = Kal/rct*10 + (Kal//rct*10/rct)
 ' calculate Kelvin
 TC = TK-273 ' and convert to degrees C

Experiment #6: Measurement and Control

Earth Measurements Student Guide Version 1.2 • Page 145

 xm=TC ' morse routine expects data in variable, xm
 gosub writedata ' write the data to eeprom
 debug dec xm,tab ' show it on debug screen
 ' gosub morse ' and send as morse code (optional)

Photodiode:
 RCtime 6,1,rct ' read the photodiode
 high 6 ' discharge the photodiode capacitor
 light=65535/rct*/lical ' calculate lux
 xm=light/2 max 255' ready to store it in eeprom
 gosub writedata ' store it in eeprom!
 debug dec light,tab ' show it on debug screen

Conductance:
 xm=mhomax ' store the maximum value from pump routine
 gosub writedata ' data to eeprom
 debug dec xm,cr ' show max conductance in umho
 mhomax=0 ' reinitialize the accumulator

goto mainloop ' back to await time or button
end ' end of main program

'------- more goto routines --------

eraselog:
 freqout 0,400,2550,1900 ' sound we got here
 for x=0 to ptr step 5 ' step through all used record numbers
 write x+log,0 ' make them zero
 next
 debug cls,"data erased!",cr ' message on cleared screen
el1: ' hold here until button released
 if in1=0 then el1
goto top

playback:
 low 3 ' pump off unconditional
 freqout 0,50,2550 ' sound we got here!
 freqout 0,100,3400
 debug cls,"logged data!",cr ' message and units
 debug "#",32,"degC",tab,"degC",tab,"lux",tab,"umho",cr
 ptr=0 ' point to start of data
pb0:
 read ptr+log,x ' read record number
 if x=0 then pb1 ' if it is zero, this is an empty record
 debug dec x," " ' show record number
 read ptr+1+log,degC ' read temperature (DS1620)
 read ptr+2+log,TC ' read temperature (AD592)

Experiment #6: Measurement and Control

Page 146 • Earth Measurements Student Guide Version 1.2

 read ptr+3+log,light ' read light
 read ptr+4+log,umho ' read conductance
 light=light*2 ' restore light units
 debug dec degC,tab,dec TC,tab,dec light,tab,dec umho,cr
 ptr=ptr+5 ' point to next record
 goto pb0 ' loop up
pb1: ' wait for button up
 if in1=0 then pb1
 debug rep "-"\31,cr ' horizontal line
goto mainloop ' go back to collect more data

' ------ subroutines --------

morse: ' enter here to send byte xm as morse code
 for j=1 to 0 ' send 2 digits, tens then ones.
 mc = xm dig j ' pick off the (j+1)th digit
 mc = %11110000011111 >> mc ' set up pattern for morse code
 for i=4 to 0 ' 5 dits and dahs
 freqout 0,dit2*mc.bit0(i)+dit,1900' send pattern from bits of mc
 pause dit ' short silence
 next ' next i,dit or dah of five
 pause dah ' interdigit silence
 next ' next j,digit of two
return ' back to main

Pump:
 high 9 ' turn on the 555
 count 10,100,cnt ' count the frequency
 low 9 ' turn off the 555
 umho=cnt*cntcal/100 max 255 ' calculate umho
 mhomax=umho min mhomax ' keep the maximum value of umho
 if umho>99 then pumpoff ' threshold to turn pump off
 if umho<50 then pumpon ' threshold to turn pump on
return ' get here if umho is betwee thresholds
pumpon:
 high 3 ' turn it on
return
pumpoff:
 low 3 ' turn it off
return
 ' out3=~(umho/(out3*49+50) max 1) ' control the pump, alternate

writedata:
 if ptr>=logsiz then writeout ' check for end of log
 write ptr+log,xm ' write this field
 ptr=ptr+1 ' point to next field
writeout:

Experiment #6: Measurement and Control

Earth Measurements Student Guide Version 1.2 • Page 147

 return

Once you get the program running, you can try a short logging experiment to be sure that it works. It should
work pretty much like the RAM data logger you made in Experiments #4 and 5. Check the design objectives
above for the details about how it is supposed to work. The logging interval is initially set to be about 1 minute
(interval con 600) in tenths of a second. If you are working in a classroom setting, your teacher may have
other suggestions for the interval and for the size and location of the log file.

Program Notes and Troubleshooting

• Weird behavior? If the program resets frequently, and seems like it never quite gets started, try to
run it without the pump plugged in.

• Hot Board of Education? The pump draws quite a bit of electrical power. The 10 ohm resistor that is

in series with the motor on the Board of Education will get warm, as will the voltage regulator that
powers the whole Board of Education. Expect the temperature of the DS1620 temperature sensor to
rise when the BOE operates the pump for a long time. Touch them carefully and see.

• Dead DS1620? If DS1620 stops responding (you see only zeros in the second column on the debug

screen), increase the delay in the DS1620 routine from 450 to a larger value. A delay is required after
sending to the DS1620 the [238] code that starts the analog to digital conversion. If you compare
carefully you will see that in program 3.4 that "start conversions" code was only sent once, early in
the program. Unfortunately, the DS1620 is quite sensitive to noise generated by the pump. As a quick
fix, we turn off the motor, and then issue the "start conversions" command. In a real engineering
project, this behavior would be troublesome, and effort would be expended to isolate and resolve
the problem.

• Calibration recall? Remember if you change the timing capacitors, you also have to recheck the

calibration. Be sure you have the 0.22 µF capacitor for the AD592 temperature sensor, and the
0.01µF for the photodiode, and 0.1 for the conductance sensor. You may, for example, want to use
the light sensor in outdoor sunlight, so you will have to change over to a 0.22µf capacitor and also
change the calibration constant.

Experiment #6: Measurement and Control

Page 148 • Earth Measurements Student Guide Version 1.2

The constants are:

Kal from Experiment #3 value= ______
lical from Experiment #4 value= ______ indoor
lical from Experiment #4 value= ______ outdoor
cntcal from Experiment #5 value= ______

• Time critical multitasking? Note that the pump subroutine at the end of the listing is called in a couple

of places. In particular, it is called repeatedly in the initial pushbutton up and pushbutton down loops.
That is because the operation of the pump is a time-critical task. This is what many kinds of
complicated programs have to do. They have to perform multiple tasks at practically the same time.
Here it is to both monitor the button and keep up the water level. The programmer has to be sure
that both tasks are serviced in a timely manner. The conductance reading in the pump routine takes
1/10 of a second, and paces the whole process. The BASIC stamp is a relatively slow computer, and it
cannot do true "multitasking". The BASIC Stamp here is getting around to the pump and the
pushbutton about 10 times per second. You can see the level in the cup drop when the program goes
off to take readings from the sensors. Maybe even a one or two-second delay is acceptable here.
But in other systems, it could matter a whole lot and you would want a faster microcontroller.

• Pump power can ruin the sensor readings? Note the low 3 command near the top of the getdata

routine. The pump is turned off unconditionally while reading the sensors. Otherwise, the noise and
heavy power supply drain of the pump would affect the readings. Try it to see what we mean.
Comment out the low 3 command, and then run the program again. During an interval when the
pump happens to be on, press the pushbutton and note the readings on the debug screen. Then press
the pushbutton again during an interval when the pump is off, and compare those readings with it on.

• Why mhomax? The conductance reading requires some explanation. The conductance is being used to

control the water level. So the pump routine reads the conductance value often as part of the pump
subroutine. That routine keeps track of the maximum value of conductance that it has detected.

mhomax=umho min mhomax

What this says is, "let the new value of mhomax be equal to whichever is greater, the conductance
(umho) or the current value of mhomax " (min, because mhomax is the minimum value in the match).
For example, if the current value of umho is 67, and the current value of mhomax is 65, the new value
of mhomax will be 67. It is mhomax that goes into the data file in the conductance routine. mhomax
is then reset to zero so that it can accumulate a new and different maximum value during the next
interval.

Experiment #6: Measurement and Control

Earth Measurements Student Guide Version 1.2 • Page 149

• 5 and next free? The writedata subroutine is called from several places in the getdata routine.

First it is called to store the ordinal record number, and then once for each sensor. At the end of the
getdata routine, the pointer is left pointing to the next free byte, where the next record number
will go the next time the interval passes or the next time the pushbutton is pressed.

Figure 5.10: Writing Data

In a professional data loggers, the ordinal number field might be used to store the time and date
(Y2K compliant, of course!).

• Find and seek? The findptr routine scans through all of the possible records in the data file, looking

only at the locations reserved for record numbers: (ptr=0, 5, 10, 15, ... ,245). If it finds a zero in one
of those locations, then that is the next free location where the next record number will go. This scan
takes place each time you press RESET on the Board of Education, or when the power is turned on.
By putting tags in the data file, it can reconstruct where it was. Note that right after that is the
instruction that tests to see if the pushbutton is being held down, just after RESET. If so the BASIC
Stamp branches to the routine that erases the data file. What it really does is to put zeros in all of
the ordinal number locations. That way the findptr routine starts over at the beginning. The
erasedata routine does not really erase all the data. Just that one field.

• Playback? The routine that plays back the data is the reverse of the routine that puts it into the

memory. rval passes or the next time the pushbutton is pressed.

Figure 5.11: Writing Data

The routine reads out 5 locations, and then leapfrogs the pointer up to the next group of five. At the
end, the pointer is left pointing to the next free location, one containing a zero in the ordinal number
field.

Experiment #6: Measurement and Control

Page 150 • Earth Measurements Student Guide Version 1.2

• Push button? The code that detects when you press and release the pushbutton should be very
familiar to you by now. Here every time around the loop, while waiting for something to happen, the
progam checks the pump and turns if off or on as needed. The routine to read the conductivity takes
about 0.1 second, so that paces the button loops too.

• Time out? The interval for logging is not very precise. You may want to calibrate it by changing the

ballpark constants.

10 seconds
1 minute
10 minutes
18000 30 minutes
36000 1 hour

To calibrate the timing, you need a stop watch. Set the interval for something like 1 minute, and time
it (using the beeps for logging) to see how it turns out with interval = 6000. If the actual time turns
out to be 1% too long, then to compensate, count for 1% less time, or interval = 5940.

• Ruin the EEPROM? Note that 16 bytes are set aside at the top of the memory. The purpose of this is

to avoid overstressing those top bytes. Recall that EEPROM has a finite life in terms of the number of
times it can be written. It take a million or so rewrites. When using EEPROM for data logging, you
have to remember this. It takes a long time to get to a million times, but don't get carried away with
rapid fire experiments with sub second timing!

• What is in memory? While in the PC editor, press ALT-M (DOS) or CTRL-M (Windows). Recall the

discussion of the "RAM Map" and the "EEPROM Map". This helps to visualize how the variables and
EEPROM space are being used. What fraction of the EEPROM are the program and the data
occupying?

Experiment #6: Measurement and Control

Earth Measurements Student Guide Version 1.2 • Page 151

Other Investigations

1) Study the flow rate from the pump, and the height of water it is capable of supporting.

2) Make a solar heater by putting black copper tubing under glass or in a bottle, out in the sun. Run the

pump to bring water into a reservoir. Monitor the water temperature and the sunlight. Use the
water temperature and the sunlight to decide when to turn on and off the pump automatically.

3) Try to PWM the pump, that is, turn it rapidly on and off as follows:

x con 5
loop:
high 3
pause x
low 3
pause 10-x
goto loop

The constant, 5 causes the pump to be on half the time and off half the time. So the pump effectively
pumps half as fast. The on and off alternate so fast that you can't perceive a stop and start in the
pumping action. Try varying the constant to see what happens at other ratios of ON to OFF time. You
can also try the BASIC Stamp II built-in PWM command.

The data logger can be used in classroom experiments. Modify the program, so it will do what you want!

Experiment #6: Measurement and Control

Page 152 • Earth Measurements Student Guide Version 1.2

Challenge!

1) Write a simple program that turns on the pump when the pushbutton is pressed once, and then it

stays on until the pushbutton is pressed again. (Push on, push off).

2) You are in charge of a public fountain that is supposed to operate only in the daytime, and only when

the sun is out and the temperature is greater than 70 degrees Fahrenheit. Write a program to
control the fountain.

3) Make a program that can draw a graph of conductance on the debug screen. Let the program fill the

cup to overflowing, and then let the level drop below the sensor tips, before starting up the pump
again. All the while graphing the conductivity reading on the debug screen.

4) A fish farm must keep the level of water up in a tank and replenished, and keep the water stirred, and

monitor for conditions that could be deadly. Write a program that Keeps the water going up and
down in the cup, but it will sound an alarm if the temperature of the water exceeds 80 degrees C, or
if the water stops flowing for any reason, or if the conductivity of the water changes drastically.

5) Sometimes in real-world settings it is desirable to know how long or what percentage of time a

motor is running versus off. This helps with maintenance and with planning for energy efficiency.
Modify program 6.2 so that it displays the percentage of time that the pump stays on. You could also
add this to your data logging program, as an indication of how much water was used.

Appendix A: Parts Listing and Sources

Earth Measurements Student Guide Version 1.2 • Page 153

Parts Listing

All components (next page) used in the Earth Measurements
experiments are readily available from common electronic suppliers.
Customers who would like to purchase a complete kit may also do so
through Parallax. Parallax adds a small packaging and handling fee to
the parts, partially offset by our volume purchases made to the

suppliers. Customers may realize small savings of 10% on low volumes (~10 units) of the “Earth
Measurements” Parts Kit by building their own component kits, but in higher volumes the savings from the
Parallax kit is more substantial.

Each experiment requires the Board of Education - Full Kit (#28102):

Parallax also manufactures the Board of Education Kit (#28150), consisting of the Board of Education and
pluggable wires only. Use the Board of Education Kit if you already have a BS2-IC module and power supply.
Individual pieces may also be ordered using the Parallax stock codes shown below.

Board of Education – Full Kit (#28102)
Parallax Code# Description Quantity
28150 Board of Education 1
800-00016 Pluggable wires 10
BS2-IC BASIC Stamp II module 1
750-00008 300 mA 9 VDC power supply 1
800-00003 Serial cable 1

Board of Education Kit (#28150)

Parallax Code# Description Quantity
28102 Board of Education and pluggable wires 1
BS2-IC Pluggable wires 10

This printed documentation is very useful for additional background information:

BASIC Stamp Documentation
Parallax Code# Description Internet Availability?
27919 BASIC Stamp Manual Version 1.9 http://www.stampsinclass.com
28125 Earth Measurements Text http://www.stampsinclass.com
27951 “Programming and Customizing the

BASIC Stamp Computer”
Table of Contents only from
http://www.stampsinclass.com

Appendix A: Parts Listing and Sources

Page 154 • Earth Measurements Student Guide Version 1.2

The Earth Measurements experiments require the Earth Measurements Parts Kit (#28126)

The contents of the Earth Measurements Parts Kit is listed below. These parts are required for building the
entire project. In case you need specific replacement parts from Parallax the stock code is listed for each
individual component. If you would rather purchase these components elsewhere and need assistance
identifying an appropriate source for these parts, please feel free to contact us at
stampsinclass@parallaxinc.com.

Earth Measurements Parts Kit (#28126)

Parallax Code# Description Quantity
150-01011 100 ohm ¼ watt 5% resistor 4
150-01020 1K ¼ watt 5% resistor 1
150-01030 10K ¼ watt 5% resistor 1
150-01040 100K ¼ watt 5% resistor 2
150-01000 10 ohm 1W resistor metal oxide 1
150-04710 470 ohm 1/4 watt 5% resistor 2
200-01010 100 pF mono radial capacitor 2
200-01040 0.1 uF mono radial capacitor 3
200-01031 0.01 uF 50V capacitor 1
200-02240 0.22 uF 50V capacitor 3
350-00012 Photodiode, blue enhanced (Photonic Detectors) 1
350-00001 LED, green 1
350-00006 LED, red 1
500-00004 2 A high gain transistor (Zetex1049A) 1
400-00001 Pushbutton 1
604-00002 DS1620 Digital Thermometer (Dallas Semiconductor) 1
604-00010 555 timer, 8-pin DIP 1
700-00020 2", 4-40 stainless steel machine screws 2
700-00036 4-40 nylon nut 2
700-00019 cable ties 2
800-00016 3” jumper wires (bag of 10) 2
800-00021 16” red jumper wire 1
800-00022 16” black jumper wire 1
900-00001 Piezospeaker (sound transducer) 1
28130 Temperature probe (Analog Devices 592 soldered to two

foot-long wires, heat-shrinked and glued for protection)
1

700-00018 Pump (Edmund Scientific X50-345) 1

Appendix A: Parts Listing and Sources

Earth Measurements Student Guide Version 1.2 • Page 155

No stock code Cup spanner made of plastic or printed circuit board, with
two 1/8" holes for screws set 0.4" apart

1

By customer Cup and tray 1

Appendix A: Parts Listing and Sources

Page 156 • Earth Measurements Student Guide Version 1.2

Sources

The Parallax distributor network serves approximately 40 countries
world-wide. A portion of these distributors are also Parallax-authorized
“Stamps in Class” distributors – qualified educational suppliers. Stamps in
Class distributors normally stock the Board of Education (#28102 and
#28150) and sometimes the Earth Measurements Parts Kit (#28126).

Several electronic component companies are also listed for customers who wish to assemble their own Earth
Measurements Parts Kit.

Country Company Notes
United States Parallax, Inc.

3805 Atherton Road, Suite 102
Rocklin, CA 95765 USA
(916) 624-8333, fax (916) 624-8003
http://www.stampsinclass.com
http://www.parallaxinc.com

Parallax and Stamps in Class source.
Manufacturer of the BASIC Stamp.

United States Digi-Key Corporation
701 Brooks Avenue South
Thief River Falls, MN 66701
(800) 344-4539, fax (218) 681-3380
http://www.digi-key.com

Source for electronic components. Parallax
distributor. May stock Board of Education.
Excellent source for components.

United States Mouser Electronics
345 South Main
Mansfield, TX 76203
(800) 346-6873, fax (817) 483-6899
http://www.mouser.com

Source for electronic components. Parallax
distributor. May stock Board of Education in 1999.
Excellent source for components.

Australia Microzed Computers
PO Box 634
Armidale 2350
Australia
Phone +612-67-722-777, fax +61-67-728-987
http://www.microzed.com.au

Parallax distributor. Stamps in Class distributor.
Excellent technical support.

Appendix A: Parts Listing and Sources

Earth Measurements Student Guide Version 1.2 • Page 157

Australia RTN

35 Woolart Street
Strathmore 3041
Australia
phone / fax +613 9338-3306
http://people.enternet.com.au/~nollet

Parallax and Stamps in Class distributor.

Canada Aerosystems
3538 Ashby
St-Laurent, QUE H4R 2C1
Canada
(514) 336-9426, fax (514) 336-4383

Parallax distributor and Stamps in Class
distributor.

Canada HVW Technologies
300-8120 Beddington Blvd NW, #473
Calgary, AB T3K 2A8
Canada
(403) 730-8603, fax (403) 730-8903
http://www.hvwtech.com

Parallax distributor and Stamps in Class
distributor.

Germany Elektronikladen
W. Mellies Str. 88
32758 Detmold
Germany
49-5232-8171, fax 49-5232-86197
http://www.elektronikladen.de

Parallax distributor and Stamps in Class
distributor.

New Zealand Trade Tech
Auckland Head Office, P.O. Box 31-041
Milford, Auckland 9
New Zealand
+64-9-4782323, fax 64-9-4784811
http://www.tradetech.com

Parallax distributor and Stamps in Class
distributor.

United Kingdom Milford Instruments
Milford House
120 High St., S. Milford
Leeds YKS LS25 5AQ
United Kingdom
+44-1-977-683-665
fax +44-1-977-681-465
http://www.milinst.demon.co.uk

Parallax distributor and Stamps in Class
distributor.

Appendix A: Parts Listing and Sources

Page 158 • Earth Measurements Student Guide Version 1.2

Boooks and
Internet
Resources

If you are new to BASIC Stamps, electronics, or programming
there are several internet and printed sources you may wish to
investigate.

Books and Publications

Programming & Customizing the Basic Stamp Computer by Scott Edwards. ISBN 0-07-913684-2. Available
from Parallax (#27905) and Amazon (http://www.amazon.com).

Parallax BASIC Stamp Manual Version 1.9 from Parallax (#27919) and distributors.

Nuts and Volts Magazine Stamp Applications. Published each month in Nuts and Volts magazine
(http://www.nutsvolts.com), with past issues available for free download from their web site.

Getting Started in Electronics by Forrest M. Mimms. Available at Radio Shack stores.

Internet

Parallax web site http://www.parallaxinc.com and the Parallax Stamps in Class web site
http://www.stampsinclass.com include free downloadable BASIC Stamp resources.

Tracy Allen, Ph.D. web site at http://www.emesystems.com. Dr. Allen wrote the Earth Measurements series and
uses the BS2SX-IC in his commercially available dataloggers.

Al Williams Consulting hosts the BASIC Stamp Project of the Month at http://www.al-williams.com.

List of Stamp Applications from http://www.hth.com provides over 150 projects using the BASIC Stamp.

Appendix B: Building the AD592 Temperature Probe

Earth Measurements Student Guide Version 1.2 • Page 159

Building the AD592
Temperature
Probe

The Earth Measurements experiments use the AD 592
temperature transducer. The part needs to be protected
before being inserted into liquid. Parallax builds a custom
temperature probe (#28130), but you can do this yourself from
these plans. An abbreviated datasheet for the AD 592 is
included in Appendix D of this text.

You’ll need the following materials:

(1) AD592 Temperature Transducer in plastic TO-92 case (Newark Electronics)
(2) 16” wires, one black and one red, stripped on both ends (or eq.)
(2) 1” solder sleeves (Powell Electronics CWT-1502 or eq.)
(1) 1½” adhesive lined heat shrink tubing with ¼” inside diameter (Digi-Key #EPS3316NK-ND or eq.)
(1) heat gun

To build the probe:

1. Identify the AD 592’s (-),
NC, and (+) pins from this
picture as viewed from
the bottom.

2. Slip the solder sleeve over
the black wire and pin 3 (-).
Slip another solder sleeve
over the red wire and pin 1
(+). Heat up the connections
until the wires are joined.

If you have no solder sleeves
you can use heat shrink
tubing.

3. Slip the heat shrink tubing over the
entire package. Fasten the package
with a heat gun, and while it’s still
hot clamp the top portion to ensure
that it stays shut.

 Clamp here

AD592

bl
ac

k

re
d

solder
sleeves

AD592

Appendix B: Building the AD592 Temperature Probe

Page 160 • Earth Measurements Student Guide Version 1.2

Appendix C: Resistor Color Code

Earth Measurements Student Guide Version 1.2 • Page 161

Resistor Color
Code

Most common types of resistors have colored bands that indicate
their value. The resistors that we’re using in this series of
experiments are typically “1/4 watt, carbon film, with a 5%
tolerance”. If you look closely at the sequence of bands you’ll
notice that one of the bands (on an end) is gold. This is band #4, &

the gold color designates that it has a 5% tolerance.

The resistor color code is an industry standard in recognizing the value of resistance of a resistor. Each color
band represents a number and the order of the color band will represent a number value. The first two color
bands indicate a number. The third color band indicates the multiplier or in other words the number of zeros.
The fourth band indicates the tolerance of the resistor +/- 5, 10 or 20 %.

Color 1st Digit 2nd Digit Multiplier Tolerance
black 0 0 1

brown 1 1 10
red 2 2 100

orange 3 3 1,000
yellow 4 4 10,000
green 5 5 100,000
blue 6 6 1,000,000

violet 7 7 10,000,000
gray 8 8 100,000.000

white 9 9 1,000,000,000
gold 5%
silver 10%

no color 20%

Appendix C: Resistor Color Code

Page 162 • Earth Measurements Student Guide Version 1.2

A resistor has the following color bands:

Band #1. = Red
Band #2. = Violet
Band #3. = Yellow
Band #4. = Gold

Looking at our chart above, we see that Red has a value of 2.

So we write: “2”.
Violet has a value of 7.
So we write: “27”

Yellow has a value of 4.
So we write: “27 and four zeros” or “270000”.

This resistor has a value of 270,000 ohms (or 270k) & a tolerance of 5%.

Appendix D: Data Sheets

Earth Measurements Student Guide Version 1.2 • Page 163

Data Sheets

Appendix D consists of abbreviated data sheets for the key
components used in these experiments. The full data sheets are
available from the manufacturer’s web sites shown below. This text
includes the first two pages only of the data sheets.

Datasheet Locator

Component Manufacturer’s internet address Pages on theirweb site

Analog Devices 592 http://www.analogdevices.com/ 8
Dallas Semiconductor 1620 http://www.dalsemi.com/ 12
Edmund Scientific Pump http://www.edmundscientific.com/ 1

Appendix D: Data Sheets

Page 164 • Earth Measurements Student Guide Version 1.2

Appendix D: Data Sheets

Earth Measurements Student Guide Version 1.2 • Page 165

Appendix D: Data Sheets

Page 166 • Earth Measurements Student Guide Version 1.2

Appendix D: Data Sheets

Earth Measurements Student Guide Version 1.2 • Page 167

Appendix D: Data Sheets

Page 168 • Earth Measurements Student Guide Version 1.2

